

NXP 半导体专业推广商

STE-LPC1760 开发套件使用说明书

STE-LPC1760 是北京胜创特电子推出的一款基于 NXP(恩智普半导体)LPC176x 系列 (Cortex-M3 内核)MCU 的全功能开发板。该板功能接口丰富,是一个用于应用开发的高 效平台,也是学习者的首选。

产品清单核对:

- STE-LPC1760 主板 1 块
- STE-LPC176x 核心板 1 块
- 平行串口线1条
- USB A-B 线1条
- miniUSB 线1条
- 交叉网线1根

使用入门

1、电源

- STE-LPC1760 开发板提供 USB 供电方式
- 通过电脑主板上 USB Device 端口向开发板主板供电,供电电流小于 500mA。
- 若单独使用开发板之核心板,使用 miniUSB 线,通过电脑主板向核心板供电。
- 2、连接

把套件内相关配件进行连接:

• PC 机, 推荐配置: Pentium4 2.0Ghz 以上的 CPU, 512M 内存, 两个 USB 接口, 1 个 COM 接口, Windows XP 操作系统, 建议安装 KEIL 集成开发环境, 如 uvision4

•把 STE-LPC1760 开发板通过串口线将板上 COM1 (JP7) 接口与 PC 主机 COM 接口 相连,用于信息的显示和输入;若有 JTAG 仿真器,通过核心板上 JTAG 接口连接,可进行 应用程序的调试和开发。

• 最后使用 USB A-B 线连接 PC 主机 USB 接口与开发板 USB Device 接口 (JP5),用于 USB 通信和供电; USB 端口供电正常时,开发板上的 Power (LED8) 指示灯亮。

3、硬件原理: 请参见光盘中的 STE-LPC1760 原理图.pdf

4、注意事项:

- 如果显示串口无输出,请检查串口设置是否正确
- 如果 SD 卡不能正确读写, 请检查 SD 卡是否插紧
- 如果网络连接不正确,请检查网线是否连接正常,网络地址是否匹配

• 不能在开发板带电情况下插/拨器件,否则可能会损坏器件和开发板,插拨器件前应 将开发板断电。

北京胜创特电子科技有限公司 www.strong-ic.com

硬件初始化状态介绍

1. 跳线功能介绍

1. 11-2-2		
跳线	状态	功能
J1	ON	VBAT 电源连接
J2	ON	VDDIO 电源连接
J3	ON	VDDREG 电源连接
J4	N/A	外接电源接口
J5	ON	Device 供电连接
J6	1-2	USB/Ethernet 控制器切换; 1-2USB; 2-3Ethernet
J7	1-2	1-2 允许 USB 设备软连接
J8	Device	USB 接口类型选择
J9	Device	USB 接口类型选择
J10	ON	LED 灯显示控制
J11	ON	LCD 数据线输入控制
J12	OFF	Ethernet 控制器功能控制(OFF 为控制器有效)
J13	N/A	N/A
J14	N/Z	N/A
J15	OFF	INTO 中断控制
J16	ON	ISP 使能控制
J17	N/A	CAN/Ethernet 控制器切换(LPC1750 有效)
J18	2-3	SPK/Joystick 切换; 1-2SPK; 2-3Joystick
J19	2-3	AD/Joystick 切换; 1-2AD; 2-3Joystick

2. 串口连接:通过提供的串口线实现实验板上的 COM1 口与 PC 机上的串口连接。

- 3. 液晶屏连接:将 LCD 液晶屏插在开发板的 LCD 屏接口上。
- 4. USB 连接: 将一根 USB 线插在主板上的 USBDevice 接口上,另一端接在 PC 机 USB 接口上。
- 5. JTAG 调试器连接:将提供的仿真器一端接在实验板的 JTAG 口,另一端和 PC 主 机相连。
- 6. 串口接收设置:在 PC 机上运行超级终端串口通信程序,选择所用到的串口并设置 如下参数;设定状态:波特率(115200)、数据位(8位)、停止位(1位)、校验位 (无)、数据流控制(无)
- 7. 网络连接: 通过提供的网络连接线连接开发板的 RJ45 接口跟 PC 端的网络接口进 行连接

STE-LPC1760 开发板结构图

电源供电

STE-LPC1760 开发板有两种方式供电通过 J5 选择一下两种供电方式。

1. 通过主板电源端子 J4 输入 5V DC, 上"负"下"正"。

2. 通过主板上 USB Device 端口供电,供电电流小于 500mA。

音频

STE-LPC1760 开发板有播放功能,通过外置的 Speaker 可以播放音频文件,DAC 输出与 Speaker 的连接可由 J18 控制

串口

STE-LPC1760 开发板引出了两路 UART, UART0(COM1)和 UART1(COM2)。两路串口均 连接到母的 DB9 连接头。UART0 支持 RTS/CTS 握手信号。

UART0 RS232 DB9 母连接头信号定义:

引脚号	功能描述	引脚号	功能描述
1	N/A	6	N/A
2	UARTO_TXD	7	ISP-Pin
3	UARTO_RXD	8	N/A
4	RST	9	N/A
5	GND		

UART1 RS232 DB9 母连接头信号定义:

引脚号	功能描述	引脚号	功能描述
1	N/A	6	N/A
2	UARTO_TXD	7	N/A
3	UARTO_RXD	8	N/A
4	N/A	9	N/A
5	GND		

SD 卡接口

STE-LPC1760 开发板具有 SD 卡接口,支持 SD 卡的读写。SD 卡和 STE-LPC1700 接口的连接信号如下:

引脚号	SD 卡接口信号	信号描述	对应 LPC1760 引脚
1	DAT2		N/A
2	DAT3		P0.16
3	CMD	SD_CMD	P0.18
4	VCC		3.3V
5	CLK	SD_CMD	P0.15
6	VSS		GND
7	DATO	SD_DAT0	P0.17
8	DAT1		N/A
9	Sh1		GND
10	Sh2		GND
11	Sh3		GND
12	Sh4		GND

CAN 接口

STE-LPC1700 主板上使用 TJA1040 作为 CAN 驱动器。CAN 接口采用 DB9 链接器接线, 这里针 2 提供 CANL 信号, 针 7 提供 CANH 信号。这些针连接到 TJA1040 CAN 驱动器芯 片上。

引脚号	功能描述	引脚号	功能描述
1, 4, 8, 9	N/A	7	CANH
2	CANL	3, 6, 5	GND

LCD 接口

引脚号	引脚功能	功能描述	对应 LPC1760 引脚
1	VCC	N/A	3.3V
2	VLED	TFT-LCD 显示板电源	P0.9
3、5、7、 9、11、13、 15、17	D0~D7	8 位数据总线	LCD0~LCD7
4	CS	片选 (低电平有效)	P0.8
6	RST	Reset 复位 (低电平复位)	RST
8	RS	控制寄存器/数据寄存器 选择(低电平选择控制 寄存器)	P0. 7
10	RW	写信号(低电平有效)	P0.6
12	RD	读信号(低电平有效)	P0. 5
19、20	GND	接地	GND

硬件测试验证

AD 测试

镜像文件: AD.hex

源代码位置: STE-LPC176x 主板 软件包\1768 AD

操作过程:将 J19 跳线切换至 1-2, J10 跳线为连接状态。将 AD.hex 下载至 MCU 的 FLASH 中

测试现象: LED0~LED7 将会随着 AD 输入电压变化而变化。

JoyStick 测试

镜像文件: AD-JOYSTICK.hex

源代码位置: STE-LPC176x 主板 软件包\1768 AD-JOYSTICK

操作过程:将 J18、J19 跳线切换至 2-3, J10 跳线为连接状态。将 AD- JOYSTICK.hex 下载 至 MCU 的 FLASH 中

测试现象: LED0~LED3, LED4~LED7 分别代表摇杆的 X 轴 Y 轴,并且显示变化量。

UART 测试

镜像文件: UART.hex

源代码位置: STE-LPC176x 主板 软件包\1768 UART 操作过程: 将UART.hex下载到MCU的FLASH中; 通过串口线,连接串口0到PC机; 在PC端 依次运行"开始"—>"程序"—>"附件"—>"通信"—>"超级终端"

CO≣1 属性		? 🗙
端口设置		
毎秒位数(B):	9600	
数据位 (担):	8	
奇偶校验(P):	无	
停止位 (S):	1	
数据流控制(2):	硬件	
	[还原为默认值 @	2
	确定 取消 区	团(4)

测试现象:调节AD输入电压,电压上升到一定值后,出现"High"字符,电压下降没有现象。 CAN测试

镜像文件: CAN.hex

源代码位置: STE-LPC176x 主板 软件包\1768 CAN

操作过程:将 CAN.hex 下载到 MCU 的 FLASH 中;按照 UART 测试,进行串口连接;将 CAN1 接口 2 号 7 号引脚和 CAN2 接口 2 号 7 号引脚相连。

测试现象:调节 AD 输入电压,电压上升到一定值后,出现"High"字符,电压下降没有现象。断开 CAN 连接线,程序运行出错。

LCD 测试

镜像文件: LCD.hex

源代码位置: STE-LPC176x 主板 软件包\1768 LCD

操作过程:将 LCD.hex 下载到 MCU 的 FLASH 中; J11 跳线为连接状态。

测试现象:液晶屏上显示胜创特电子科技有限公司LOGO和相关的文字

USB Device测试

镜像文件 : USBMem.hex

源代码位置: NXP测试代码\USBMem

操作步骤:将USBMem.hex下载到MCU的FLASH中

测试现象:重上电或者复位,可以看到PC机中有一个U盘的表示,则可看到

A/D Converter Input 2: 0V 0.5V 1V 1.5V 2V 2.5V 3V A/D Converter Input 2(same): 0V 0.5V 1V 1.5V 2V 2.5V 3V

MDK介绍

RealView MDK开发套件是Keil公司目前最新推出的针对ARM MCU嵌入式处理器的软件开发工具。RealView MDK集成了业内最领先的技术,包括µVision4集成开发环境与RealView编译器。支持ARM7、ARM9和最新的Cortex-M3核处理器,自动配置启动代码,集成Flash烧写模块,强大的Simulation设备模拟,性能分析等功能。

MDK软件可以从STE-LPC1700评估板配套光盘获取,或者从Keil网站<u>www.keil.com</u>中下 载最新版本。双击安装文件setup.exe,出现如下的安装界面,根据界面安装向导的提示,完成 Keil u Vision4的安装。

例程操作

程序例程操作顺序(例LCD测试)

- 1. 首先打开LCD文件夹双击 LCD. Uv4工程文件,则会打开工程文件。
- 2. 工程文件中包含 StartUp(启动代码存放区), System Code(系统代码区), Core Code (核心代码区), NVIC Code(嵌套中断代码区), Source Code(源代码区)文件夹。
- 3. 连接好电源线和仿真器接线(ULINK2 与 JTAG)
- 4. 点击 Flash/Download 进行程序下载:如图

🔣 LCD – \mu Vision4	
<u>File E</u> dit <u>V</u> iew <u>P</u> roject	Fl <u>a</u> sh <u>D</u> ebug Peripherals <u>T</u> ools <u>S</u> VCS <u>W</u> indow <u>H</u> elp
i 🗋 💕 🖫 🍠 🐰 🗈	🙀 Download 🐘 🐘 🛊 津 / /長 🖄
i 🧆 🕮 🕮 🧼 🔣 i 🙀	Erase
Project	Configure Flash Tools
🖃 🛅 RAM	001 #include "LPC17xx.H"
🖹 🔄 Startup Code	002 #include "nvic.h"
🔤 🔝 startup_LPC1	7xx.s 003 #include "type.h"
😑 🤤 System Code	004
🖻 🔛 system_LPC17	xx. c 005

或者点击快捷图标:

🛯 L	CD ·	- µХ	ision4					
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>P</u> roject	Fl <u>a</u> sh	<u>D</u> ebug	Pe <u>r</u> ipherals	<u>T</u> ools	<u>s</u> vcs
1	2	1 🥑	XD	B 4	10		虚伪	限
1 🕸				RAM	下载程	『序・	- X	- 5

北京胜创特电子科技有限公司 www.strong-ic.com

5. 下载完后可执行 Debug/Start/Stop Debug Session(Ctrl+F5)进行调试,如图:

🔣 LCD – 🛛 Vision4		
<u>File E</u> dit <u>V</u> iew <u>P</u> roject Fl <u>a</u> sh	Debug Peripherals Tools SVCS Window	<u>H</u> elp
i 🗋 💕 🖟 🌒 🕼 🗛 🛍 🕯	Start/Stop <u>D</u> ebug Session Ctrl+F5	e //z 🖄
i 🕸 🎬 🍘 🧼 🔛 I 🙀 I RAM	Reset CPU	
Project	国 Run F5	
🖃 🚵 RAM	Stop	.H"
startup_LPC17xx. s		
🖃 📇 System Code	E Step Over E10	

或者快捷图标: 梁来进行调试。

点击以后主显示区显示汇编程序代码,要查看源代码可以在单步之前右击鼠标选择 Show Source Code for current Address.如下图:

i Rist 🗉 🖤 🕐	0° ()° ()	
Registers	★ 廿 ×	加持方式
Register	Value	大進力工
E Core		119: int 1;
RO	0x10000068	120: unsigned char *j;
R1	0x10000068	➡)0x00000790 B570 PUSH {r4-r6,1r}
R2	0x10000068	121: SystemInit();
R3	0x10000068	0x00000792 F7FFFDB5 BL.W SystemInit (0x000003
R4	0x00000000	122: GPI00->FIODIR = 0x01B80000;
R5	0x10000004	0x00000796 F04F70DC MOV r0.#0x1B80000
R6	0x00000000	0x00000793 494B LDB r1 [nc #300] · @0x0
R7	0x00000000	0x0000070G 6008 STD = =0 [m1 #0x00]
R8	0x00000000	
K9	0x00000000	
R10	0x00000230	
K11 P10	0x0000000	LCD.c
R12 R12 (SP)	0x10000044	
R13 (31)	0x10000200	II3 LCD_RW_SEL;
R15 (PC)	0×00000790	114 LCD_CS_SET;
+ xPSB	0x21000000	115 }
+Banked		116 -
±System		117 int main (void)
- Internal		与118⊟ (