AN10916

FAT library EFSL and FatFs port on NXP LPC1700
Rev. 2 — 6 July 2010 Application note

Document information

Info Content
Keywords LPC1700, File system, EFSL, FatFs, SDC/MMC
Abstract EFSL and FatFs are two popular FAT libraries for developing small

embedded systems. This application note describes how to port these
FAT libraries to NXP Cortex-M3 LPC1700 devices. An external
SDC/MMC, connected to an LPC1700 SPI/SSPO will be used as a
physical disk. A set of easy-to-use SPl and SDC/MMC API functions are
also provided.

h o
P

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

Revision history

Rev Date Description

2 20100706 Added text “and applicable licenses and/or copyrights” to sentence regarding URLs for
FAT, EFSL, and FatFs.

1 20100304 Initial version.

Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 2 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

1. Introduction

EFSL and FatFs are two popular FAT libraries for developing small embedded systems.
This application note describes how to port these two FAT libraries to NXP Cortex-M3
LPC1700 devices.

A set of easy-to-use SPl and SDC/MMC API functions is also provided to access
SDC/MMC conveniently.

This application note includes:

o A set of easy-to-use SPI and SDC/MMC APIs to access the SDC/MMC via SPI on
LPC1700

e How to port EFSL and FatFs to LPC1700 step by step

The sample software is tested on Keil's MCB1700 evaluation board with a 2 GB Kingston
Micro SD card.

2. Access SDC/MMC via SPlon LPC1700

2.1 SDC/MMC introduction

The Secure Digital Card (SDC below)/ Multi Media Card (MMC below) is a flash-based
memory card specifically designed to meet the security, capacity, performance and
environmental requirements inherent in next generation mobile phones and consumer
electronic devices.

SDC communication is based on an advanced nine-pin interface (clock, command,
4xData and 3xPower lines) designed to operate in a low voltage range. The SDC host
interface supports regular MMC operation as well. There are also reduced size versions,
such as RS-MMC, miniSD and microSD, with same function.

The main difference between the SDC and MMC is the initialization process.

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 3 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

2.2 SDC/MMC interface

The SDC/MMC interface allows for easy integration into any design, regardless of
microcontroller used. For compatibility with existing controllers, the SDC/MMC offers, in
addition to the SDC/MMC Interface, an alternate communication protocol based on the
SPI standard.

The SDC/MMC pin assignment is shown in Table 1:

Table 1. SDC/MMC pin assignment

Pin No. Name Type Description

SDC/MMC Bus Mode!"

1 CD/DAT3 1/0, PP Card detect/Data line [Bit 3]
2 CMD 110, PP Command/Response

3 Vss1 S Supply voltage ground

4 Vdd S Supply voltage

5 CLK I Clock

6 Vss2 S Supply voltage ground

7 DATO I/0, PP Data line [Bit 0]

8 DAT1 I/0, PP Data line [Bit 1]

9 DAT2 I/0, PP Data line [Bit 2]

SPI Bus Mode

1 CS I Chip Select (active low)

2 Dataln I Host-to-card Commands and Data
3 Vss1 S Supply voltage ground

4 Vdd S Supply voltage

5 CLK I Clock

6 Vss2 S Supply voltage ground

7 DataOut O Card-to-host Data and Status
8 RSV - Reserved

9 RSV - Reserved

[11 For MMC, only one data line, DATO, is used.

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 4 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

The SDC/MMC bus topology on both modes is shown in Fig 1.

HUS|
CLK

Vdd
Vs

DO-3(A),

CLK cs

vdd cs
Vs SD Memoary Power Supply SPIBus Master | —

Card (A)

CMD(A) [

D0-3(B). [
CMDB) [

DO-D3_CMD,|

CLK SPI Bus (CLK, Dataln, DataOut)

Widd
s 5D Memory
Card (B)

D0-D3, t'.'MD>

SPI Card SPI Card

CLK

R[]
A MultiMediaCard

DO-3(C ¥
CMO(C

©)
DO.CS CM 11202 Not

Connecled

a. SDC/MMC bus mode b. SPI bus mode

Fig1. SDC/MMC system bus topology

23
2.31

2.3.2

AN10916

Since LPC1700 does not have SDC/MMC native host interface, we have to access the
SDC/MMC via SPI interface. Only SPI mode will be discussed in the rest of this section.

SPI mode
SPI bus topology

The SPI mode is a secondary communication protocol for SDC/MMC. This mode is a
subset of the SDC/MMC protocol, designed to communicate with an SPI channel,
commonly found in NXP and other vendors’ microcontrollers.

The SDC/MMC can be attached to most microcontrollers via the generic SPI interface.
Because SPI mode is suitable for low cost embedded applications, there is no reason to
attempt to use native mode with a cheap microcontroller that has no native SDC/MMC
interface.

The SDC/MMC identification and addressing algorithms are replaced by the hardware
CS signal. A card (slave) is selected for every command by asserting the CS signal
(active low). Refer to Fig 1(b).

The CS signal must be continuously active for the duration of the SPI transaction
(command, response and data).

The bi-directional CMD and DAT lines are replaced by unidirectional dataln and dataOut
signals. This eliminates the ability to execute commands while data is being read or
written which prevents sequential multi read/write operations.

SPI bus protocol

The SPI standard defines the physical link only and not the complete data transfer
protocol. In SPI mode, the SDC/MMC uses a subset of the SDC/MMC protocol and
command set.

Similar to the SDC/MMC bus protocol, the SPI messages are built from command,
response and data-block tokens. The host (master) controls all communication between
host and cards. The host starts every bus transaction by asserting the CS signal, low.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 5 of 26

NXP Semiconductors AN1 091 6

AN10916

2.3.3

24

FAT library EFSL and FatFs port on NXP LPC1700

The response behavior in SPI mode differs from the SDC/MMC mode in the following
three ways:

1. The selected card always responds to the command.
2. An 8-bit or 16-bit response structure is used.

3. When the card encounters a data retrieval problem, it will respond with an error
response (which replaces the expected data block) rather than time-out as in the
SDC/MMC bus mode.

Mode selection

The SDC/MMC wakes up in the SDC/MMC mode. It will enter SPI mode if the CS signal
is asserted (negative) during the reception of the reset command (CMDO). If the card
recognizes that the SDC/MMC mode is required it will not respond to the command and
remain in the SDC/MMC mode. If SPI mode is required, the card will switch to SPI mode.

SPI interface on LPC1700

There is one SPI controller with synchronous, serial, full duplex communication and
programmable data length on LPC1700 devices.

Remark: SSPO is intended to be used as an alternative for the SPI interface, which is
included as a legacy peripheral. Only one of these peripherals can be used at any one
time.

The SSP can produce a faster data bit rate than SPI. The maximum SPI data bit rate is
one eighth of the input clock rate, and the maximum SSP speed (in master mode) is
pclk/2. In Slave mode, the SSP clock rate provided by the master must not exceed 1/12
of the SSP peripheral clock (selected in peripheral clock selection register).

For example, if the PCLK is set to 100 MHz, the maximum SPI rate will be 12.5 Mbit/sec
(100 MHz/8). The maximum SSP speed in master mode will be 50 Mbit/sec (100 MHz/2)
and in slave mode 8Mbit/sec (100 MHz/12).

The pin connection between LPC1700 SSPO0 and external Micro SD card slot on Keil's
MCB1700 board is shown in Fig 2.

sD PIS-008-2000-1

—L pane

D3-CD/NSS
CMD-MOSI
VDD

CLK

VSS

PO.16
PO.18

_L(IH5 P0.15

100n PO.17

DO-MISO

= e BN =) B SN B)

Fig 2. Schematic of SDC/MMC on Keil MCB1700 board

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 6 of 26

NXP Semiconductors

AN10916

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

Table 2. Micro SD card pin assignment

Note: The pin assignment of an SD card and Micro SD card is slightly different
Pin No. Name Type Description

SDC Bus Mode

1 DAT2 I/0, PP Data line [Bit 2]

2 CD/DAT3 I/0, PP Card detect/Data line [Bit 3]
3 CMD I/O, PP Command/Response

4 vdd S Supply voltage (2.7v / 3.6v)

5 CLK I Clock

6 Vss S Supply voltage ground

7 DATO I/0, PP Data line [Bit 0]

8 DAT1 I/0, PP Data line [Bit 1]

SPI Bus Mode

1 RSV - Reserved

2 CS I Chip Select (active low)

3 Dataln I Host-to-card Commands and Data
4 Vdd S Supply voltage

5 CLK I Clock

6 Vss Supply voltage ground

7 DataOut O Card-to-host Data and Status
8 RSV -— Reserved

2.5 SPl drivers and APIs

A total of eight API functions are provided for the SPI communication in Ipc17xx_spi.c:

e void

LPC17xx_SPI_lInit (void);

This API is used to initialize SPI interface on LPC1700 through configuring SSP0O

PCONP, GPIO, control registers.
LPC17xx_SPI_Delnit (void) ;

e void

This API is used to clear the initial SSPO registers’ configurations and then power off

the SSPO.

e void

LPC17xx_SPI_Select (void);

This APl is used to assert the CS (low).

The host starts every bus transaction by asserting the CS signal low, and the CS
signal must be asserted during a transaction. If the CS signal goes high any time
during a data transfer, the transfer is considered to be aborted. This signal is not

directly driven by the master. It could be driven by a simple general purpose /O
under software control.

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010

7 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

e void LPC17xx_SPI_DeSelect (void);

This API is used to de-assert the CS (high) to release the SPI bus.
e void LPC17xx_SPI_Release (void);

This APl is used to release the SPI bus.
e void LPC17xx_SPI_SetSpeed (uint8_t speed);

This API is used to configure the SPI data bit rate.

During SDC/MMC initialization phase, the speed is normally set to 400 kHz while in
data transfer phase; it can be set to a high speed (MMC up to 20 MHz and SDC up
to 25 MHz).

e void LPC17xx_SPI_SendByte (uint8_t data);
This APl is used to send one byte of data through SPI bus.
o uint8_t LPC17xx_SPI_RecvByte (void);
This API is used to receive one byte of data through SPI bus.

2.6 SDC/MMC drivers and APIs

A total of four API functions are provided for accessing SDC/MMC in Ipc17xx_sd.c:
e bool LPC17xx_SD_Init (void);
This APl is used to initialize the SDC/MMC.
e bool LPC17xx_SD_ReadCfg (SDCFG *cfg);

This APl is used to read SDC/MMC configuration including register OCR, CID, CSD
and some calculated parameters such as sector count, sector size, etc.

e bool LPC17xx_SD_ReadSector (uint32_t sector, uint8_t *buff, uint32_t count);

This APl is used to read specified number of sectors of data from the SDC/MMC.
Sector size is fixed to 512 bytes.

e bool LPC17xx_SD_WriteSector (uint32_t sector, const uint8_t *buff, uint32_t
count);

This API is used to write specified number of sectors of data to SDC/MMC.

3. EFSL and FatFs Introduction

AN10916

3.1 About FAT

The FAT (File Allocation Table) file system (also known as FAT12, FAT16 and FAT32)
was developed by Bill Gates and Marc McDonald. It is the primary file system
architecture now widely used on most operating systems and memory cards.

FAT was created for managing disks efficiently. The name originates from the usage of a
table which centralizes the information about which areas belong to files, are free or
possibly unusable, and where each file is stored on the disk. To limit the size of the table,
disk space is allocated to files in contiguous groups of hardware sectors called clusters.
As disk drives have evolved, the maximum number of clusters has dramatically
increased, as well as the number of bits used to identify each cluster. The successive
major versions of the FAT format are named after the number of table element bits: 12,
16, and 32. The FAT standard has also been expanded in other ways while preserving
backward compatibility with existing software.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 8 of 26

NXP Semiconductors AN1 091 6

AN10916

3.2

3.3

FAT library EFSL and FatFs port on NXP LPC1700

For more information about FAT and applicable licenses and/or copyrights, please go to

http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

About EFSL

The Embedded File Systems Library (EFSL) project aims to create a library for file
systems, to be used on various embedded systems. Currently EFSL supports the
Microsoft FAT file system family. It is EFSL’s intent to create pure ANSI C code that
compiles on anything that bears the name 'C compiler'.

Adding code for your specific hardware is straightforward; just add code that fetches or
writes a 512 byte sector, and the library will do the rest. Existing code can of course be
used, own code is only required when you have hardware for which no target exists. For
example, it supports secure digital cards in SPI mode.

This project is released under the regular Public License with an exception clause. This
clause states that you are allowed to statically link against the library without having to
license your own code as GPL as well.

For more information about EFSL and applicable licenses and/or copyrights, please go to

http://efsl.be/
About FatFs

FatFs is a generic FAT file system module for small embedded systems. The FatFs is
written in compliance with ANSI C and is completely separate from the disk I/O layer; it is
independent of hardware architecture. It can be incorporated into low cost
microcontrollers without any change.

The FatFs has the following features:

¢ Windows compatible FAT12/16/32 file system.

¢ Platform independent; easy to port.

o Very small footprint for code and work area.

e Various configuration options:
¢ Multiple volumes (physical drives and partitions).
e Multiple OEM code pages including DBCS.
¢ Long File Name (LFN) support in OEM code or Unicode.
e RTOS support.
e Multiple sector size support.
¢ Read-only, minimized API, 1/O buffer, etc.

The FatFs module is free software available for education, research and development.
You can use, modify and/or redistribute it for personal, non-profit use or commercial
products without any restriction under your responsibility.

For more information about FatFs and applicable licenses and/or copyrights, please go to

http://elm-chan.org/fsw/ff/00index _e.html

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 9 of 26

http://www.nxp.com/redirect/microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://www.nxp.com/redirect/efsl.be/
http://www.nxp.com/redirect/elm-chan.org/fsw/ff/00index_e.html

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

4. EFSL port on LPC1700

AN10916

4.1

4.2
421

EFSL structure
The EFSL internal structure is shown in Fig 3:

[File HFiIesystemH PartitionH Disc)—Pb[|1OMan thlnterface)

Fig 3. EFSL structure

EFSL has created a linear object model that is quite simple. The Filesystem object deals
with handling the file system specific tasks. The Partition object is responsible for
translating partition relative addressing into disc-based LBA addressing. The Disc object
holds the partition table, and has a direct link to a cache manager, IOMan. In IOMan, all
requests for disc sectors come together. IOMan will perform checks to see if sectors
have to be read from disc (or from memory), or written back to disc. In the latter case
(reading or writing to disc), a request is made to the hardware layer.

The hardware interface has three responsibilities:
1. Initialize the hardware
2. Read sectors from disc
3. Write sectors to disc

All requests are sector-based. A sector is a 512 byte piece from the disc, which is aligned
to a 512 byte boundary.

EFSL port on LPC1700 is rather straightforward; just add code that will fetch or write a
512 byte sector, and the library will do the rest.

The rest of this section will describe step by step how to port EFSL (revision 0.2.8) to
LPC1700.
Setup basic framework

Define a name for your endpoint

You will need this name to create the required defines in the source code. In this project,
the name is HW_ENDPOINT_LPC17xx_SD, which is defined in config.h:

* Here wou will define for what hardware-endpoint EFSL should be compiled.
* Look in interfaces.h to sSee what sSystewms are supported, and add your awn
* there if wou need to write your own driver. Then, define the name you
* gelected for your hardware there here. Make sure that you only select one
* device!
ki

/*g§define HW_ENDFOINT LINTZ®/

/*ffdefine HV_ENDPOINT ATNEGALLZE_SD*/

//#define HV_ENDPOINT LPC2000_SD

/% defines the interface for LPCZ13x (0=3PI0 1=3PI1) &/

// #define HW_ENDPOINT LPCZOO0O_SPINUN (0]

//#define HV_ENDPOINT LFCZOO00_SFINUM (1)

/*#define HW ENDPOINT D3P TIG713 SD*/

/% define the interface for LPC17Vxx S5P0 */

#define HW ENDPOINT LPC17xx_SD

Fig 4. Name definition for LPC17xx

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 10 of 26

NXP Semiconductors AN1 091 6

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

4.2.2 Define the sizes of integer types

Open inc/types.h and create a new entry. You may use copy-paste if one of the existing
sets is identical to yours.

typedef char eintd:

typedef signed char esints:
typedef unsigned char esuints;
typedef short =intlé;

typedef signed short ezintlé:;
typedef unsigned short euintcié:;
typedef int eint3Z;

typedef signed int esintiz;
typedef unsigned int euintiz:

Fig 5. Integer types definitions for EFSL

4.2.3 Add your endpoint to interface.h

Add the new entry in inc/interface.h.

#if defined (HW_ENDPOINT LINUX) || defined(HV_ENDPOINT LINUZ&64)
#include "interfaces/linuxfile.h”
#elif defined(HV ENDPOINT ATMEGAlZS 3D)
finclude "interfaces/atmegalZs.h”
#elif defined (HU_ENDFOINT DSP_TIGV13_SD)
ginclude "interfaces/dspeTux.h"
#2lif defined (HU ENDPOINT LPCZ000 3D)
finclude "interfaces/lpcZ000 spi.h™
Helif defined(HU ENDPOINT LPC17xx_35D)
ginclude "interfaces!if_lpcl?xx.h"
#else
f#error "NO INTERFACE DEFINED - see interface.h"
#endif

Fig 6. Add endpoint in interface.h

4.2.4 Configure EFSL

The configuration file (\efsl\conf\config.h) defines the behavior of the library. In the
configuration files there are many settings, most of which default to safe or standard
compliant settings.

The configurations used in this project are listed in Table 3.

Table 3. Configurations of EFSL in this project

Item Configuration Description
Hardware target #define HW_ENDPOINT_LPC17xx_SD Access SDC/MMC via LPC17xx SSP0O
Memory [* #define BYTE_ALIGNMENT */"! Specify that the MCU can not access

memory byte oriented

Cache #define IOMAN_NUMBUFFER 6 6x512 byte (3 KB) RAM used for
#define IOMAN_NUMITERATIONS 3 cache
#define IOMAN_DO_MEMALLOC

Cluster pre-allocation #define CLUSTER_PREALLOC_FILE 2 The number of clusters pre-allocated
#define CLUSTER_PREALLOC_DIRECTORY 0 When writing files.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 11 of 26

NXP Semiconductors AN1 091 6

4.2.5

4.3
431

4.3.2

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

Item Configuration Description

Endianess #define LITTLE_ENDIAN All FAT structures are stored in Intel
little endian order

Date and Time support /*#define DATE_TIME_SUPPORT*/ Disable date and time support
Error reporting support #define FULL_ERROR_SUPPORT Enable error recording for all object
List options #define LIST_MAXLENFILENAME 12 Configure what kind of data you will

get from directory listing requests

Debugging /* #define DEBUG */ Disable debugging behavior

[1] Being commented out means the macro is not defined.

Create source files

Create header files in inc/interfaces and source files in src/interfaces. In this project, we
use Ipc17xx_spi.h, Ipc17xx_sd.h, Ipc17xx_spi.c and Ipc17xx_sd.c.

Lpc17xx_spi.c(h) includes APIs to communicate via SSPO on LPC1700.
Lpc17xx_sd.c(h) includes APIs to access SDC/MMC via SSPO on LPC1700.

Implement low level functions

hwinterface

This structure represents the underlying hardware. There are some fields that are
required to be present (because EFSL uses them), but you may put in as much or as
little as your driver requires to access the hardware.

As always, in embedded design it is recommended to keep this structure as small as
possible.

jwww\

hwInterface

* long ZectorcCount Humber of sectors on the file.
\w*t***tw*t***#w*t#*##**#####*t#*###*tw*t***t#*t***##*t#*##**#f
struct hwInterface!

euintiz Sectoricount;
b
typedef struct hwinterface hwlnterface;

Fig 7. Structure hwinterface

If_initinterface

This function will be called one time, when the hardware object is initialized by efs_init().
This code should bring the hardware in a ready to use state.

It is recommended, but not required, to fill in the sectorCount filed in structure
hwinterface.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 12 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

ezintf if initInterface hwinterface* file, eint8% opts)
{
SDCFG SDCfo:

if (LPC17xx 3D Initi) == false)
return (-1);
if (LPC17xx_SD_ReadCfgi&3DCfg) == false)

return [(-Z):
file->sectorCount = 3DCfg.sectorocnt;

return 0;

Fig 8. Implementation of if_initinterface

4.3.3 If_readBuf
This function is used to read a sector from the disc and store it in a user supplied buffer.

Please be very careful to respect the boundaries of the buffers, since it will usually be
IOMan calling this function. If you have a buffer overflow, you might corrupt the cache of
the next buffer, which may produce extremely rare and impossible to retrace behavior.

I
read s sector from the disc and store it in & user supplied buffer.

note that there is no support for sectors that are not 512 bytes large
wf

ezintd if readBuf (hwInterface?* file,euint3Z address,euintd* buf)

i

if (LPC17xx_3D ReadSector (address, buf, 1) == true]
return O;

else
return (-1);

Fig 9. Implementation of if_readBuf

This is an LBA address, relative to the beginning of the disc. When accessing an old hard
disc, or a device which uses some other form of addressing, you must recalculate the
address to your own addressing scheme. Please note that there is no support for sectors
that are not 512 bytes large.

4.3.4 If_writeBuf

The function works exactly the same as its reading variant.

ll."ﬂ'
Write & Sector.

note that there is no support for sectors that are not 512 hytes large.

*/

ezint8 if writeBuf (hwinterface?* file,euint32 address,euint8%* buf)
i
if [LPC17xx_ 35D WriteSector (address, buf, 1) == true)
return 0O;
else
return (-1):

Fig 10. Implementation of if_writeBuf

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 13 of 26

NXP Semiconductors

AN10916

4.4 Demo

FAT library EFSL and FatFs port on NXP LPC1700

Create a Keil uVision4 project and add all related source files.

Main.c is the test file. It will list all files in the root directory, open a file, and then append

one line at the end of that file.

This demo is tested on the KEIL MCB1700 evaluation board. For more information about

MCB1700, please refer to: http://www.keil.com/mcb1700/.

Tera term (or other tools) is used for serial communication between PC terminal and
MCB1700 and configured at 115200 baud, 8-bits, no parity, 1 stop bit, XON/XOFF.

A 2 GB Kingston Micro SD card is used for test.

Project

R X

SR

5-EF-EH-E-E-E-E-E-E-E-E-E-E-E-E ﬂ? 1-E-EH-E-E-E

=33

+

Fig 11. Source files of the project

- 24 MCE1700 RAM

LPC1700

E starbup LPC17Fxz s
E syskem_LPC1 o
E iF_lpcid.c
E |pcl7xx_spi.c
] Ipc1Ta_sd.c
3 [pcl 7= _uart.c
E rmonitar,
EF5L

&] Is.c

] mkfs.c

E partition.c

E plibc.c

E time.c

E ui.c

E debug.c

#] dir.c

3 disc.c

[H] efs.c

3 extract.c

%] fat.c

[X] file.c

[X] fs.c

E jornarn, ©

Iain

mnain. c

The file structure in root directory of SDC/MMC and COM output are shown below.

Remark: Since EFSL does not support long file name (LFN), file “efslifntest.txt” is

displayed as “efslIf~1.txt”".

AN10916 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010

14 of 26

http://www.nxp.com/redirect/keil.com/mcb1700/

NXP Semiconductors

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

Marne S, Type
[efsldirt File: Folder
[efsidirz File Falder

Z] efslfntest.txt 1 KE Text Document
: i 1KB Text Document
[‘?J efslkst, bk 1kKE Text Document

a. Files on root directory

Fig 12. Demo result

B Tera Term - COM1 VT
File Edit Setup Control ‘Window Help

WMC/SD Card Filesystem Test (P:LPCI768 L:EFSL)
CARD inmit...ok

Directory of “root™:

EFSLLF™1THT, 0x24 hytes

, 00 bytes

, 021D bytes

. 0x0 bytes

EFSLTSTZTHT, 0x1D bwtes

File efsltstl.txt open. Content:
efzltstl.txt for EFEL test.

File efsltstl.txt open. Content:
efzltstl.txt for EFEL test.
tppending thiz line on 14:27:58 Jan 8§ 2010

EF:EL test complete.

. COM output

5. FatFs port on LPC1700

5.1 FatFs structure

The FatFs structure is shown in Fig 13.

Fig 13. FatFs structure

FatFs module

t -

=)

FatFs module is a middleware which provides many functions to access the FAT

volumes, such as f_open, f_close, f_read, f_write, etc (refer to ff.c). There is no platform
dependence in this module, as long as the compiler is in compliance with ANSI C.

A low level disk I/O module is used to read/writ the physical disk.

An RTC module is used to get the current time.

The Low level disk 1/0 and RTC module are completely separate from the FatFs module.
They must be provided by the user, which is the main task of porting FatFs module to

other platform.

The rest of this section will describe step by step how to port FatFs (revision 0.07e) to

LPC1700.

AN10916 All information provided in this document is subject to legal disclaimers.

Application note

Rev. 2 — 6 July 2010

File efsltztl.txt open for append. Appending. ..ok

© NXP B.V. 2010. All rights reserved.

NXP Semiconductors

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

5.2 Define the size of integer types

The FatFs module assumes that the size of char/short/long are 8/16/32-bit and int is 16
or 32 bit. These correspondences are defined in integer.h. This will not be a problem on
most compilers. Any conflict with existing definitions must be resolved carefully.

/% These typez must he

typedef int
typedef unsigned int

/% These types must he
typedef sigmed char

typedef unsigned char
typedef unsigned char

/* These types must he
typedef short

typedef unsigned short
typedef unsigned short
typedef unsigned short

/% These types must he

typedef long
typedef unsigned long
typedef unsigned long

16-hit,
INT:
UINT:

FZ-bit or larger integer */

S-hit integer */

CHALER:
UCHAR;
BYTE:

16-bit integer */

SHORT;
USHORT:
WORD »

WCHAR;

32-bit integer */

LONG;
ULONG;
DWORD;

Fig 14. Integer types definitions for FatFs module

5.3 Configure the FatFs module

All of the configurations and detailed descriptions can be found in ffconf.h (for FatFs

revision 0.07e).

The configurations used in this project are listed in Table 4.

Table 4.

Item

Function and Buffer
Configurations

Configuration

#define_FS_TINY 0

Configurations of FatFs module in this project

Description

Use the sector buffer in the individual file data transfer.

#define _FS_READONLY 0

Enable both read and write functions.

#define _FS_MINIMIZE

0

Enable full function.

#define_USE_STRFUNC 0

Disable string functions.

#define_USE_MKFS 1

Enable f_mkfs function

#define_USE_FORWARD 0

Disable f_forward function

Locale and
Namespace
Configurations

#define _CODE_PAGE 850 OEM code page “Multilingual Latin 1” will be used on
the target system.

#define_USE_LFN 1 Enable LFN

#define _MAX_LFN 255 Maximum LFN length to handle

#define _LFN_UNICODE 0 Disable Unicode.

#define _FS_RPATH 1

Enable the relative path feature and f_chdir and
f_chdrive function are available.

Physical Drive
Configurations

#define _DRIVES 1

Only 1 physical driver is allowed.

#define MAX_SS 512

Maximum sector size to be handled

AN10916 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010

16 of 26

NXP Semiconductors AN1 091 6

AN10916

5.3.1

5.3.2

FAT library EFSL and FatFs port on NXP LPC1700

Item Configuration Description

#define _MULTI_PARTITION 0 Each volume is bound to the same physical drive
number and can mount only first primary partition.

System #define _"WORD_ACCESS 0 Enable the Byte-by-byte access
Configurations

#define _FS_REENTRANT 0 Disable reentrancy.

_USE_LFN

The FatFs module supports Long File Name (LFN) in revision 0.07e. The two different
file names, SFN and LFN, of a file are transparent in the file functions except for
f_readdir function. To enable LFN feature, set USE_LFN to 1 or 2, and add a Unicode
code conversion function ff_convert and ff_wtoupper to the project. This function is
available in option\cc*.c.

Note that the LFN feature on the FAT file system is a patent of Microsoft
Corporation. When enabled on commercial products, a license from Microsoft may
be required depending on the final destination.

_CODE_PAGE

The _CODE_PAGE specifies the OEM code page to be used on the target system.
Incorrect setting of the code page can cause a file open failure.

When the LFN feature is enabled, the module size will be increased depending on the
selected code page. Table 5 shows the difference in module size when LFN is enabled
with some code pages. The Chinese and Korean language have tens of thousands of
characters which require a huge OEM-Unicode bidirectional conversion table; therefore,
the module size will be drastically increased as shown in Table 5. As a result, the FatFs
with LFN will not be able to be implemented in some microcontrollers with limited ROM
size.

Table 5. ROM size increase with different code pages on Cortex-M3

Code page ROM size increase (byte)
SBSC 2796
CP932 (Japanese Shift-JIS) 61656
CP936 (Simplified Chinese GBK) 176856
CP949 (Korean) 138912
CP950 (Traditional Chinese Big5) 110544

[11 Compiler: armcc V4.0.0 Optimization: O3

5.4 Implement low level functions

Since the FatFs module is completely separate from the disk /O and RTC module, it
requires the following functions to read/write the physical disk and to get the current time.
Because the low level disk /0 and RTC module are not a part of the FatFs module, they
must be provided by the user.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 17 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

5.4.1 disk_initialize
The disk_initialize function initializes a physical drive.

This function is called from the volume mount process in the FatFs module to manage
the media change. The application program must not call this function while the FatFs

module is active; the FAT structure on the volume may collapse. To re-initialize the file
system, use f_mount function.

o

/% Initialize Disk Drive *
',l"’* *,l"’
DSTATUS disk initialize (

BEYTE drv /% Physical drive number (0) %/
)
{

if (drv) return 3TL NOINIT: /% Zupports only single driwve */

/4 1f (Stat & STA NODISK) return Stat; /% No card in the socket +/

if (LPC17xx_SD Init() && LPC17xx 8D ReadCfg(sSDCLg))
Stat &= ~STL_NOINIT:

return Stat:

Fig 15. Implementation of disk_initialize

5.4.2 disk_status

The disk_status function returns the current disk status which is a combination of the
following flags.

o STA_NOINIT: Indicates that the disk drive has not been initialized.
e STA NODISK: Indicates that no medium is in the drive.
e STA PROTECTED: Indicates that the medium is write protected.

Since the MCB1700 board does not provide card detection and write protection, we will
neglect these two flags: STA_NODISK and STA_PROTECTED.

e ———————————————————
/% Get Disk Status
l'l.’ A o
DSTATUS disk_status |

EYTE drv /% Physical drive number (0] #/
I
{

if (drv) return STL NOINIT: /% Supports only single driwve */

return Stat:

Fig 16. Implementation of disk_status

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 18 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

5.4.3 disk_read

The disk_read function reads one or more sectors from the disk drive.

i “f
/* Read Sector(s) i
ol =
DRESULT disk_read |
EYTE drv, /% Physical drive nuwber (0] */
BYTE *huff, /* Pointer to the data buffer to store read data */
DWORD sector, /% Start sector muber (LBA) */
EYTE count /% Sector count (1..255) /
i
i
if (drv || 'count) return RES PARERR:

if (Stat & STA NOINIT) return RES NOTRDY;

if (LPC17xx_SD_Readdector (sector, buff, count] == true
return RES OK;

else
return REZ ERRCR;

Fig 17. Implementation of disk_read

5.4.4 disk_write
The disk_write function writes one or more sectors to the disk.

This function is not required in read only configuration.

,u"’*
/¥ Write Zector(3)
,u"’*
#if _READONLY == O

DREZULT disk write |

BYTE drv, /% Physical drive nwmber (0] 7
const BYTE +*buff, /* Pointer to the data to he written */
DWORD sector, /% Start sector number (LEL) */
BYTE count /% Sector count (1..255) %/
)
{
if (drv || !count) return RE3 PARERR;

if (Stat & STA_NOINIT) return RES NOTRDY:
/¢ if (Stat & STA _PROTECT] return RES_WRPRT;

if (LPC17%xx SD_WriteSector (sector, buff, count) == true
return RES OK;

else
return RES ERROR;

}
fendif /* READCNLY == 0 %/

Fig 18. Implementation of disk_write

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 19 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

5.4.5 disk_ioctl

The disk_ioctl function controls device specified features and miscellaneous functions
other than disk read/write.

Table 6. Supported commands in disk_ioctl functions

Command Description

Device independent

CTRL_SYNC Ensures that the disk drive has finished pending write process. When
the disk I/O module has a write back cache, flush the dirty sector
immediately. This command is not required in read-only configuration

GET_SECTOR_SIZE Returns sector size of the drive into the WORD variable pointed by
Buffer. This command is not required in single sector size configuration,
_MAX_SS is 512.

GET_SECTOR_COUNT Returns total sectors on the drive into the DWORD variable pointed by
Buffer. This command is used in only f_mkfs function.

GET_BLOCK_SIZE Returns erase block size of the memory array in unit of sector into the
DWORD variable pointed by Buffer. This command is used in only
f_mkfs function.

Device dependent

MMC_GET_TYPE Get card type flags (1 byte)
MMC_GET_CSD Receive CSD as a data block (16 bytes)
MMC_GET_CID Receive CID as a data block (16 bytes)
MMC_GET_OCR Receive OCR as an R3 response (4 bytes)

MMC_GET_SDSTAT Receive SD status as a data block (64 bytes)

Please refer to the software example for the detailed implementation of these functions.

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 20 of 26

NXP Semiconductors

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

5.4.6 get_fattime

The get_fattime function gets current time which is not required in read only

configuration.
. &
/% User Provided RTC Function for FatFs module i
. &
/% Thiz iz a real time clock service to be called from i
/% FacFs module. Any valid time mustc be returned even if +/
/% the system does not support an RTC. *
% This function is not reguired in read-only cig. wf

DWORD get fattime ()
{
RTCTime rte:

/% Get local time */
rtc_gettime | &roe);

/% Pack date and time into a DWORD wvarishle */
return { (DWORD) irtc.RTC_Year - 1980) << Z5)
| ((DWORD]rtec.RTC_Mon << 21)
| [(DWORD]rtc.RTC_Mday << 1)
| ((DWORD]rtec.RTC_Hour << 11)
| [(DWORD]rte.RTC_Min << 5)
| [{DWORD)rte.RTC Sec »» 1);

Fig 19. Implementation of get_fattime

5.5 Demo

This demo is also tested on Keil's MCB1700 evaluation board with the same 2 GB
Kingston Micro SD card and COM configuration.

(| LPC1700_FatFs - pVision4
File Edit WView Project Flash Debug

RE=As K- e =

2 B4 | ¥4 | MCB17EE Ra
Project - 1
= #4 MCE1TEE_RAM
- £5 Lpci700

1] E syskem_LPC17xwx.c
E startup_LPC17xx.5
+ 3 LPC17xx_spic
[%] LPC1T:x_sd.c
+ E lpci7Fxx_uart.c
+ [*] lpct 7 _rte.c
+ %] monitor.c
—| =5 FatFs
+ (%] ff.c
+ [#] ceshes.c
= =5 Main
+ [%] main.c
—| =5 Documentation

readme, bt

Fig 20. Source files of the project

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010

21 of 26

NXP Semiconductors

AN10916

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

Table 7. Supported commands for FatFs

Command

Disk functions

Description

Di Initialize the disk
Ds Show disk status
dd [<Iba>] Dump a specific sector

File functions

fi Force initialize the logical drive

fs Show logical drive status

fl [<path>] Directory listing

fo <mode> <file> Open afile

fc Close a file

fe Seek file pointers

fd <len> Read and dump file from current fp
fr <len> Read file

fw <len> <val> Write file

fn <old_name> <new_name>

Change file/dir name

fu <name> Unlink a file or dir
fv Truncate file
fk <name> Create a directory

fa <atrr> <mask> <name>

Change file/dir attribute

ft <year> <month> <day> <hour>
<min> <sec> <name>

Change timestamp

fx <src_name> <dst_name>

Copy file

fg <path>

Change current directory

fj <drive#>

Change current drive

fm <partition rule> <cluster size>

Create file system

fz [<rw size>]

Change R/W length for fr/fw/fx command

Time functions

t [<year> <mon> <mday> <hour> Get or set the current date and time

<min> <sec>]

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010 22 of 26

NXP Semiconductors

AN10916

FAT library EFSL and FatFs port on NXP LPC1700

I Tera Term - COM1 VT
File Edit Setup Control ‘Window Help

i

Drive size: 3842048 sectors
Sector size: 512

Eraze block size: 8192 sectors
MMC/ SO0 type: 4

CsD:

OCR:
nononnoo &0 FF 80 00 ...
SD Status:

i

re=0 FR_0K

Az

FAT type = 3

Eytes/Cluster = 4098
Wumber of FATs = 2

Foot DIR entries = 0
Sectors/FAT = 3745

Wumber of clusters = 473287
F4T start (lba) = 175

DIR start {lba,clustor) = 2
Data start (Iba) = 76EB

G files, 217 bytes.

2 folders.

1917188 KB total disk space.
1905948 KB available.

il

| 2 Dir(s), 1951630752 bytes free

Fig 21. Demo output

nononaoo 00 2E 00 22 5B B4 83 A9 FF FF FF 80 16 20 00 81 ...
CID:
nononnon 02 54 40 53 44 30 32 47 38 A7 53 93 92 00 92 M

Q0000000 00 00 00 00 00 00 00 23 02 02 90 02 00 32 00 00
nooonoin o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o0 .
nonono2n o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oo .
0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

a. Card and file system information test

FatFs module test monitor for LPC17xx (Dec 21 200915:27:41)

-THEDO2GR.5.

S i T

----# 2010/01/08 14222 36 EFSLLF™1.THT efslifntest.txt
[---- 201040108 14210 0 efzldirl
----d 201040108 14230 74 efsltsti.txt
[---- 2010/01/08 14:20 0 efzldir2
----# 2010/01,/08 14230 28 efsltst2. tut
3 File(s), 139 bytes total

B Tera Term - COM1 VT

File Edit Setup Control ‘Window Help

»fo 10 2

re=0 FR_OK

Bfw 100000 1

100000 bytes written with 283 kB/sec.
>fw 100000 2

100000 bytes written with 847 kB/sec.
Bfw 100000 3

100000 bytes written with 793 kB/sec.
Gfw 100000 4

100000 bytes written with 800 kB/sec.
Bfw 100000 &

100000 bytes written with 826 kB/sec.

re=0 FR_OK
>f
----# 2010/01/08 14:22 36 EFSLLF™1.THT
D---- 2010/01/08 14:10 0 efsldir
----h 2010701708 14:30 74 efsltsti.txt
----- 1980,/00,/00 00:00 n
---=4 2010701701 00:01 s000on 2
D---- 2010701708 14:20 0 efzldir?
----h 2010/01,/08 14:30 29 efsltst2.txt
5 Filels), 800139 bytes total
2 Dirs), 1951186944 bytes fres
>fo 12
re=0 FR_OK
>fr 100000
100000 bytes read with 1381 kBfsec.
>fr 100000
100000 bytes read with 1218 kBfsec.
>fr 100000
100000 bytes read with 1298 kB/sec.
>fr 100000
100000 bytes read with 1282 kBfsec.
e
re=0 FR_OK

ot
20104171 00:02:12
ot
2010/1/1 00:02:50
>

b. Card R/W and RTC test

efs|lfntest.txt

AN10916

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010

23 of 26

NXP Semiconductors AN1 091 6

FAT library EFSL and FatFs port on NXP LPC1700

6. References

[11 NXP LPC17xx User Manual UM10360 (Rev. 00.07), NXP Semiconductors, July 31,
2009

[2] SanDisk SD Card Product Manual (Version 2.2), SanDisk Corporation. Nov, 2004

[3] The MultiMediaCard System Specification, Version 3.1, MMC Association Technical
Committee, June 2001.

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 2 — 6 July 2010 24 of 26

NXP Semiconductors

AN10916

7. Legal information

FAT library EFSL and FatFs port on NXP LPC1700

7.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or

AN10916

All information provided in this document is subject to legal disclaimers.

customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks

Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

© NXP B.V. 2010. All rights reserved.

Application note

Rev. 2 — 6 July 2010

25 of 26

NXP Semiconductors

AN10916

8. Contents

FAT library EFSL and FatFs port on NXP LPC1700

1. Introduction ... e 3
2, Access SDC/MMC via SPl on LPC1700 3
2.1 SDC/MMC introductioncccccceeviiviiieeeeeeiins 3
2.2 SDC/MMC interfaceccceeeeeeeiiiiiiiieeee e 4
2.3 SPIMOAE oo 5
2.31 SPI bus topologycceveeiiiiiiiiieeeeeeeee e 5
2.3.2 SPI bus protoCol...........ccoocvviiiiieiiiiiiiieee e, 5
2.3.3 Mode selection..........coooviiiiiiiiiiiieeee e 6
24 SPl interface on LPC1700..........ccooccviiieeeeeeinne 6
25 SPldrivers and APIs ... 7
2.6 SDC/MMC drivers and APIS..........cccoiieeieiinie 8
3. EFSL and FatFs Introductioncccccoeneeeeeee 8
3.1 ADBOUL FAT ..ot 8
3.2 ADBOUt EFSL ... 9
3.3 About FatFs. ... 9
4. EFSL port on LPC1700..........cccocmrrrieerrneennnnes 10
4.1 EFSL structurecooovvvveeeeeiiiicee e, 10
4.2 Setup basic framework.............cccceeviiininnnnnnn. 10
421 Define a name for your endpoint...................... 10
422 Define the sizes of integer typescccceeee 11
423 Add your endpoint to interface.h 11
424 Configure EFSL........ooooiiiiiiiieiecc e
425 Create source files

4.3 Implement low level functionsc.ccccceeeeeel 12
4.3.1 hwinterface.........cccooveeiiiiee e 12
43.2 If_initinterface..........occovveeiiiiii e 12
4.3.3 If readBuf.......cccooeviiiiiiiiiice e 13
434 I WriteBUF ..o 13
4.4 DEMO ..o 14
5. FatFs port on LPC1700cccccinimmerininnnnninnns 15
51 FatFs structure ..o 15
5.2 Define the size of integer types.........cccccoeniie 16
53 Configure the FatFs module............................. 16
5.3.1 CUSE _LFN e 17
5.3.2 _CODE_PAGEcctiiieeee e 17
5.4 Implement low level functionsccc........ 17
54.1 disk_initializeccccoeeeiiiiiii 18
54.2 disk_status.................co 18
54.3 disk read............ccco 19
544 disk_ Writeooooeeeie 19
545 AiSK_IOCH ...eviiiiiiiiiee e 20
5.4.6 get_fattime ..., 21
55 DEMO ..o 21
6. References........ccooveeeecerrerieeeeecee s e s eeeseeeeeeeeens 24
7. Legal informationcccocccriniiininiienninieninns 25

71 DefiNitioNS.......eeiieeeeeeeee e 25
7.2 DiSCIaIMErS......ieieeeieceee e 25
7.3 Trademarkscceeeeeiiiiiiiieeeeeeeeecee e, 25
8. Contents.....cooeviiviiiiiri e ————— 26

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an please send an email to:
salesaddresses@nxp.com
Date of release: 6 July 2010
Document identifier: AN10916

	1. Introduction
	2. Access SDC/MMC via SPI on LPC1700
	2.1 SDC/MMC introduction
	2.2 SDC/MMC interface
	2.3 SPI mode
	2.3.1 SPI bus topology
	2.3.2 SPI bus protocol
	2.3.3 Mode selection

	2.4 SPI interface on LPC1700
	2.5 SPI drivers and APIs
	2.6 SDC/MMC drivers and APIs

	3. EFSL and FatFs Introduction
	3.1 About FAT
	3.2 About EFSL
	3.3 About FatFs

	4. EFSL port on LPC1700
	4.1 EFSL structure
	4.2 Setup basic framework
	4.2.1 Define a name for your endpoint
	4.2.2 Define the sizes of integer types
	4.2.3 Add your endpoint to interface.h
	4.2.4 Configure EFSL
	4.2.5 Create source files

	4.3 Implement low level functions
	4.3.1 hwInterface
	4.3.2 If_initInterface
	4.3.3 If_readBuf
	4.3.4 If_writeBuf

	4.4 Demo

	5. FatFs port on LPC1700
	5.1 FatFs structure
	5.2 Define the size of integer types
	5.3 Configure the FatFs module
	5.3.1 _USE_LFN
	5.3.2 _CODE_PAGE

	5.4 Implement low level functions
	5.4.1 disk_initialize
	5.4.2 disk_status
	5.4.3 disk_read
	5.4.4 disk_write
	5.4.5 disk_ioctl
	5.4.6 get_fattime

	5.5 Demo

	6. References
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

	8. Contents

