AN10900 FM+ I2C on LPC1300 Rev. 01 — 17 December 2009

Application note

Document information

Info	Content
Keywords	LPC1300, FM+, Fast-mode Plus, I ² C, Cortex-M3
Abstract	This application note introduces how to use the Fast-mode Plus I^2C of LPC1300 with demo code and an I^2C demo board. NXP PCF9674 and PCA9632 are used as FM+ slave examples. I^2C high speed design concerns are also discussed.

Revision history

Rev	Date	Description
01	20091217	Initial version.

Contact information

For additional information, please visit: <u>http://www.nxp.com</u> For sales office addresses, please send an email to: <u>salesaddresses@nxp.com</u>

AN10900_1

Application note

1. Introduction

The LPC1300 is a family of ARM Cortex-M3 based microcontrollers for embedded applications featuring a high level of integration and low power consumption. Each microcontroller contains an I²C-bus interface.

This I²C-bus interface supports the full I²C-bus specification and Fast-mode Plus with a data rate of up to 1 Mbit/s. Also supported are multiple address recognition and monitor mode. In Fast-mode Plus, rates from 400 kHz to 1 MHz may be selected.

This document will give an example of how to implement Fast-mode Plus on the LPC1300 family of parts and describes I^2C high-speed design concerns.

2. How to implement FM+ on LPC1300

2.1 LPC1300 I²C Fast-mode Plus

Fast-mode Plus supports a 1 Mbit/sec transfer rate to communicate with the l²C-bus products that NXP Semiconductors is now providing.

PIO0_4 and PIO0_5 are the pins used for the I^2C interface. In order to use Fast-mode Plus, the I2C pins must be properly configured in the IOCONFIG register block as shown in <u>Table 1</u> and <u>Table 2</u>.

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_4	
		001	Selects I ² C function SCL	
		010 to 111	Reserved	
7:3		-	Reserved	00000
9:8	I2CMODE		Selects I ² C mode	00
		00	Standard mode/ Fast-mode I ² C	
		01	Fast-mode Plus I ² C	
		11	Reserved	
31:10	-	-	Reserved	-

Table 1. IOCON_PIO0_4 register (IOCON_PIO0_4 address 0x4004 4030) bit description

Table 2. IOCON_PIO0_5 register (IOCON_PIO0_5 address 0x4004 4034) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_5	

F۸	/+	120) or	۱LI	PC	130)

ΔΝ1Λ9Λ

Bit	Symbol	Value	Description	Reset value
		001	Selects I ² C function SDA	
		010 to 111	Reserved	
7:3		-	Reserved	00000
9:8	I2CMODE		Selects I ² C mode	00
		00	Standard mode/ Fast-mode I ² C	
		01	Fast-mode Plus I ² C	
		11	Reserved	
31:10	-	-	Reserved	-

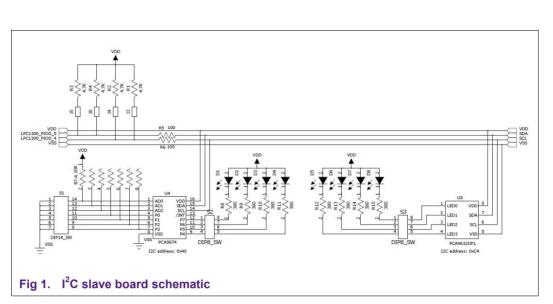
For Fast-mode Plus, FUNC(Bit 2:0) should be 001 and I2CMODE(Bit 9:8) should be 01.

After configuring Fast-mode Plus, the I^2C pins are configured with the input glitch filter enabled (this includes an open-drain output according to the I^2C -bus specification). In this mode, the pins function as high-current sinks.

2.2 Example

The demo has been developed with Keil's MDK 3.70 environment and tested on an NXP LPC1300 board and an I^2C slave board. An IAR project based on EWARM 5.40 is also provided.

2.2.1 Hardware


NXP's LPC1300 and an I²C FM+ demo board consist of the hardware environment. A 30cm I²C cable connects LPC1300 and I²C FM+ demo board.

The I^2C FM+ board schematic is shown in Fig 1.

The NXP PCA9674 and PCA9632 were selected as the Fast-mode Plus I²C slaves.

The PCA9674 is an NXP Remote 8-bit I/O expander for FM+ I^2 C-bus. In this example, P0~P3 are configured as inputs and P4~P7 are configured as outputs to drive LEDs.

The PCA9632 is an NXP 4-bit FM+ I^2 C-bus low power LED driver. In this example, the PCA9632 is used to drive four LEDs. The LED blink frequency is changed to show whether the I^2 C-bus is in FM+ mode or standard I^2 C mode.

S1.1~S1.3 are the address selectors for the PCA9674. Setting all switches to ON will configure the PCA9674 address as 0x40.

S1.4 is the mode select switch. Switch it ON to configure the I^2C -bus as FM+ mode and switch it OFF to configure the I^2C -bus to standard I^2C mode. D1~D4 are indicators for S1.4~S1.7.

LED D5~D8 are driven by the PCA9632 and are used to show the I²C mode via blinking frequency.

J3~J6 are jumpers to configure the I2C pull up resisters.

2.2.2 Software

The example software is designed to demonstrate Fast-mode Plus I^2C using the LEDs. Two source code files are provided, I2C.c and I2Ctest.c.

2.2.2.1 I2C.c

I2C.c contains the I²C related functions which are called by the main routine.

Functions	Description
void I2C_IRQHandler(void)	I ² C interrupt handler- used for master mode only.
uint32_t I2CStart(void)	Create an I ² C start condition.
uint32_t I2CStop(void)	Set the I ² C stop condition.
uint32_t I2CInit(uint32_t I2cMode)	Initialize the I ² C controller.
uint32_t I2CEngine(void)	Complete an I ² C transaction from start to stop.

2.2.2.2 I2Ctest.c

I2Ctest.c is the main routine to read and write the I²C date/command to the slaves:

```
1 while(1)
2 {
3  /* Write PCA9674 0xFF to config IOs as input and read IOs back */
4  /* Write SLA(W), data(0xFF), SLA(R), and read 2 byte back. */
```

AN10900

FM+ I2C on LPC1300

5

6

7

8 9

10

11 12

13 14

15 16

17

18

19

20

21

22

23 24

25

26 27

28

29

30

31

32 33

34 35

36 37

38

39

40

41

42 43

44

45

46

47

48 49

50

51

53 54

55

52

I2CEngine();

```
I2CWriteLength = 2;
I2CReadLength = 2;
I2CMasterBuffer[0] = PCA9674 ADDR;
I2CMasterBuffer[1] = 0xFF;
I2CMasterBuffer[2] = PCA9674 ADDR | RD BIT;
I2CEngine();
/* PCA9674 PO as switch for FM+(1Mbps) and standard/FM(400Kbps) I2C */
if (I2CSlaveBuffer[0] & 0x01)
{
    /* I2C FM+ mode */
    LPC IOCON->PIO0 4
                        &= ~0x0000031F; /* I2C FM+ I/O config */
   LPC_IOCON->PIO0_4
                         = 0x00000101; /* I2C FM+ SCL */
    LPC IOCON->PIO0 5
                          &= ~0x0000031F;
    LPC IOCON->PIO0 5
                          = 0x00000101; /* I2C FM+ SDA */
    /*--- Reset Baud Rate to 1Mbps ---*/
    LPC I2C->SCLL = 48;//24;//0x18;
   LPC I2C->SCLH = 48;//24;//0x18;
}
else
{
    /* I2C standard/FM */
                                        /* I2C I/O config */
    LPC IOCON->PIO0 4
                         &= ~0x1F;
   LPC_IOCON->PIO0_4
                         = 0 \times 01;
                                         /* I2C SCL */
    LPC IOCON->PIO0 5
                          &= ~0x1F;
                                          /* I2C SDA */
    LPC IOCON->PIO0 5
                          = 0 \times 01;
   /*--- Reset Baud Rate to 62.5Kbps ---*/
    LPC I2C->SCLL = 96;//192;//384;//2400;//0x180;
    LPC I2C->SCLH = 96;//192;//384;//2400;//0x180;
}
/* Write SLA(W), data1 */
I2CWriteLength = 2;
I2CReadLength = 0;
I2CMasterBuffer[0] = PCA9674 ADDR;
I2CMasterBuffer[1] = (I2CSlaveBuffer[0] << 4) | 0x0F;</pre>
I2CEngine();
/* Write PCA9632 config parameters for LED dimming */
/* Write SLA(W), CON, OOH ~ OCh */
I2CWriteLength = 6;
I2CReadLength = 0;
I2CMasterBuffer[0] = PCA9632_ADDR;
I2CMasterBuffer[1] = 0xC2;
                                         // Control register
I2CMasterBuffer[2] = temp;
                                         // PWMO
I2CMasterBuffer[3] = temp + 0x40;
                                         // PWM1
I2CMasterBuffer[4] = temp + 0x80;
                                         // PWM2
I2CMasterBuffer[5] = temp + 0xC0;
                                         // PWM3
```

AN10900

FM+ I2C on LPC1300

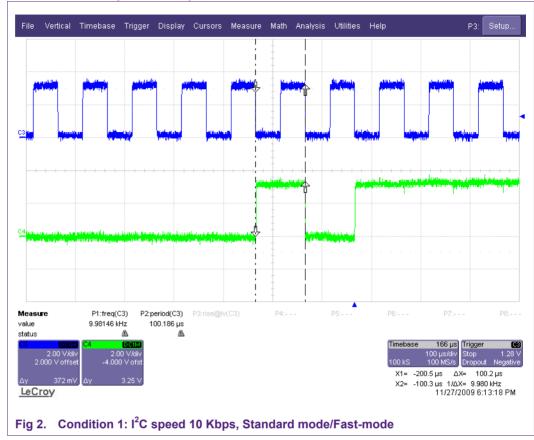
2.2.3 Conditions and test results

59

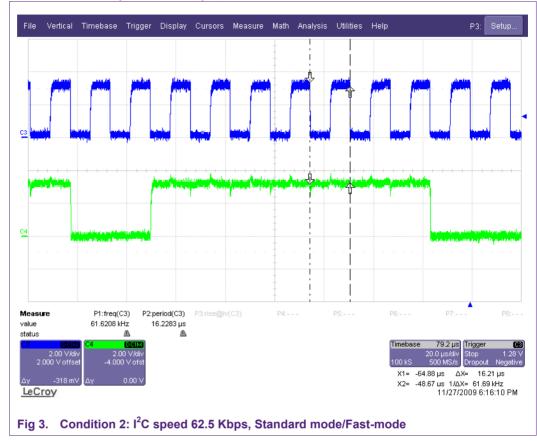
On the I²C FM+ demo board, we configure J3 and J5 closed, J4 and J6 open to select the pull up resistance as $4.7 \text{ K}\Omega$.

Software can set values for the registers I2SCLH and I2SCLL to select the appropriate data rate and duty cycle. I2SCLH defines the number of PCLK I2C cycles for the SCL high time; I2SCLL defines the number of PCLK_I2C cycles for the SCL low time. The frequency is determined by the below formula (PCLK I2C is the frequency of the system clock):

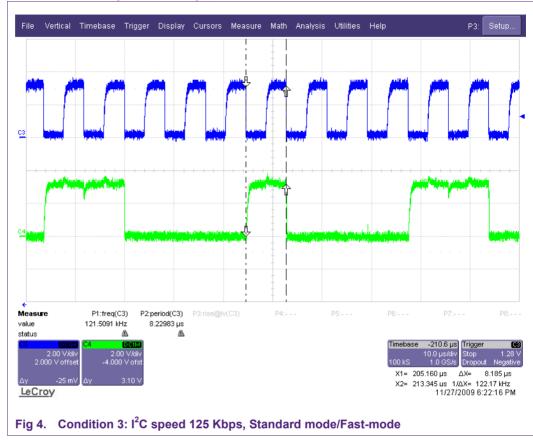
 $I2Cbitfrequency = \frac{PCLKI2C}{I2SCLH + I2SCLL}$

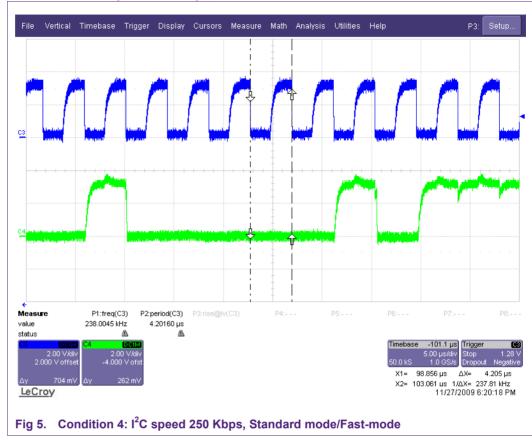

Software configures PCLKI2C as 48 MHz, and various I²C speeds are generated by different I2SCLH AND I2SCLL configurations as shown in Table 4 below:

Condition	I ² C bit frequency	I ² C mode	PCLKI2C	I2SCLH	I2SCLL
1	10 Kbps	Standard mode/Fast-mode I ² C	48 MHz	2400	2400
2	62.5 Kbps	Standard mode/Fast-mode I ² C	48 MHz	384	384
3	125 Kbps	Standard mode/Fast-mode I ² C	48 MHz	192	192
4	250 Kbps	Standard mode/Fast-mode I ² C	48 MHz	96	96
5	500 Kbps	Fast-mode Plus I ² C	48 MHz	48	48
6	1000 Kbps	Fast-mode Plus I ² C	48 MHz	24	24


I²C speed configurations Table 4.

AN10900


FM+ I2C on LPC1300


2.2.3.1 Condition 1: I²C speed 10 Kbps, Standard mode/Fast-mode


2.2.3.2 Condition 2: I²C speed 62.5 Kbps, Standard mode/Fast-mode

2.2.3.3 Condition 3: I²C speed 125 Kbps, Standard mode/Fast-mode

2.2.3.4 Condition 4: I²C speed 250 Kbps, Standard mode/Fast-mode

2.2.3.5 Condition 5: I²C speed 500 Kbps, Fast-mode Plus

2.2.3.6 Condition 6: I²C speed 1000 Kbps, Fast-mode Plus

3. I²C baud rate error at high speed

3.1 Description

As shown in section 2.2.3 test results, the measured I^2C speed does not match the configured speed. Table 5 shows the error in each condition.

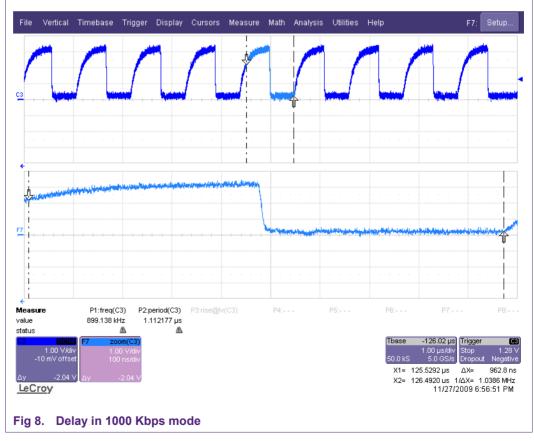
Table 5.I²C baud rate error

I ² C speed configured	I ² C speed measured	Error
10 Kbps	9.98146 Kbps	-0.19 %
62.5 Kbps	61.6208 Kbps	-1.41 %
125 Kbps	121.5091 Kbps	-2.79 %
250 Kbps	238.0045 Kbps	-4.8 %
500 Kbps	453.890 Kbps	-9.22 %
1000 Kbps	850.7742 Kbps	-14.92 %

The error becomes larger as the I^2C speed is increased. This is understood and explained here. The I^2C master monitors its own outgoing clock edges, and each clock cycle cannot start until the SCL pin returns high. Since I^2C pins are open-drain, the bus is pulled high by pull-up resistors. An I^2C slave can implement flow control by holding the

AN10900 1

clock SCL low. The master is designed to wait until the clock is released before sending the next clock.


Typically on a high-speed I²C-bus you would see a sharp high-to-low transition and a slower low-to-high transition. The asymmetry is caused by using a pull-up resistor instead of an active driver to pull up the bus.

A per-clock delay can be caused by the inherent rise time seen on the bus. Slow rise time on the SCL pin is indistinguishable from slave clock stretching. The "electrical clock stretching" delay is constant relative to the speed of the bus, but variable relative to the capacitive loading on the SCL pin. This delay would increase the clock period by a constant amount. When the I²C-bus is in a higher speed mode, this constant amount will take more share of the clock period, and make the I²C speed lower than the speed configured.

3.2 Delay in 1000 Kbps mode

As an example, if in 1000 Kbps, the measured SCL frequency is 899.138 Kbps. There is a per-clock delay every SCL period.

So if the SCL period is counted from 70 % V_{DD} , as <u>Fig 8</u> shows, the SCL frequency is more accurate, around 1000 Kbps.

In a real-world system this delay cannot be completely eliminated, but can be reduced.

Because this delay is mostly the charging time of the SCL, decreasing the pull up resister could significantly reduce the delay, thus making the I^2C speed closer to the designed speed.

4. Conclusion

Today, a single I²C channel must support many diverse tasks simultaneously such as product authentication, EEPROM reads, temperature measurement, and power system margining. For this reason, performance has become critical. The LPC1300's integrated Fast-mode plus I²C controller provides an easy way to improve I²C-bus performance by more than 2x without adding cost or complexity. The only critical task is to make sure that the I²C-bus meets the required electrical specs such as capacitance and includes proper termination. NXP's product line includes many FM+ capable I²C devices besides the LPC1300 series microcontroller.

5. Legal information

5.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

5.2 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

5.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

I²C-bus — is a trademark of NXP B.V.

6. Contents

1.	Introduction3
2.	How to implement FM+ on LPC13003
2.1	LPC1300 I ² C Fast-mode Plus3
2.2	Example4
2.2.1	Hardware4
2.2.2	Software5
2.2.2.1	l2C.c5
2.2.2.2	I2Ctest.c5
2.2.3	Conditions and test results7
2.2.3.1	Condition 1: I ² C speed 10 Kbps, Standard
	mode/Fast-mode8
2.2.3.2	Condition 2: I ² C speed 62.5 Kbps, Standard
	mode/Fast-mode
2.2.3.3	Condition 3: I ² C speed 125 Kbps, Standard
	mode/Fast-mode
2.2.3.4	Condition 4: I ² C speed 250 Kbps, Standard
	mode/Fast-mode
2.2.3.5	Condition 5: I ² C speed 500 Kbps, Fast-mode
2.2.3.6	Plus
2.2.3.0	Plus
•	-
3.	I ² C baud rate error at high speed13
3.1	Description
3.2	Delay in 1000 Kbps mode14
4.	Conclusion15
5.	Legal information16
5.1	Definitions16
5.2	Disclaimers16
5.3	Trademarks16
6.	Contents17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2009. All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, email to: salesaddresses@nxp.com

> Date of release: 17 December 2009 Document identifier: AN10900_1

