

AN10795
LPC29xx Power-down mode explained

Rev. 02 — 25 February 2009 Application note

Document information

Info Content

Keywords LPC29xx, PMU, CGU, Power-down mode

Abstract This Application Note describes the techniques necessary to place the
LPC29xx device into Power-down mode

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 2 of 18

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

02 20090225 Made various edits throughout.

01 20090210 First release

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 3 of 18

1. Introduction
The LPC29xx incorporates a sophisticated and complex power management system. In
this application note we will describe how to use the power management unit to place the
MCU into a power down (PD) state while maintaining the ability to respond to its
environment.

2. Hardware
The Keil MCB2900 version 1 evaluation board with a LPC2919/01 is used in this
application note. The board switches connected to external interrupt 4 and 5 are used as
inputs. The external interrupts can be changed to other ports by modifying a ‘define’ in
the code, so other board can also be used. Software configuration of the hardware will be
discussed in detail in the software chapter.

By removing 0 Ω resistor R6 from the MCB2900 it is possible to measure the supply
current of the VDD (1v8) domain. The VDDE (3v3) domain isn’t taken in account
because this primarily depends on the environment of the device. The current readings
mentioned in this application note are numbers for a single device at room temperature
and do not represent minimum or maximum guarantees. For detailed specification refer
to the datasheet.

3. Software

3.1 IDE
The Code supplied was developed with Keil’s uVision MDK V3.24. This tool has a
convenient feature to place functions in volatile memory. It is necessary to place some
code in volatile memory, as will be explained in paragraph 4.1.6.

3.2 Configuring the code
The program uses two external interrupts to exit from wakeup and sleep modes. The
‘extint.h’file configures which pins are connected to the external interrupts and which
interrupt is used. External interrupts zero to seven can be defined. For the MCB2900, the
push buttons P1.30 and P1.31 are connected to external interrupt 4 and 5.
#define EXINT_sleep 4
#define EXINT_wake 5

The user also has the option of lowering power consumption at the cost of a slightly
longer recovery time. Details about this are presented in paragraph 4.3.
#define SWITCH_CLOCKS_TO_XTAL 0

3.3 Compiling and flashing the code
The project is setup to be run from the LPC2900 internal FLASH. After compiling, the
code can be downloaded (flashed) and run. Debugging is only possible before entering
the powerdown (PD) mode since all clocks, including the JTAG clock, are disabled in PD
mode. The connection between the MCU and debugger is lost in PD mode and can only
be restored by a reset.

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 4 of 18

4. Program description
The main program blinks an LED connected to P1.27 while waiting for a button press on
P1.30 (defined as the wakeup button) or P1.31 (defined as the sleep button). The
external interrupt handler sets a flag when the wakeup or sleep button is pressed and
this flag is polled in the main program loop. If the wakeup button (P1.30) was pressed, an
LED is toggled and the MCU will wake up, if in Power Down mode. If the sleep button
(P1.31) was pressed, the software calls the function ‘GOSleepMode()’ which handles the
clock switching and PMU settings to cause the MCU to enter PD state. The status of the
system is indicated on the LCD display.

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 5 of 18

initialize

Init IO

Init event router

Blink led on
GPIO 1.27

External
interrupt?

Btn wake
pressed?

Btn sleep
pressed?

Blink led on
GPIO 1.26

Call function
GOSleepMode

Disable interrupts

Switch system to
LPosc

Switch Clock
branches to Xtal

[1]

Setting wakeup
bits

Disable clock
branches

[1]

Stop PLL and
Crystal oscillator

Disable EEPROM

Disable FLASH
and enable sleep

Code execution stopped
until a button is pressed.

Enable FLASH

Restart Oscillator,
PLL and

reconfigure
clocks[1]

Enable interrupts

Return

a. Main program b. Function GOSleepMode
 [1] Implementation depends on

configuration see §3.2

Fig 1. Program flow diagram

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 6 of 18

4.1 Entering sleep mode
Some preparation is needed to setup the wakeup source and prepare the MCU to enter
PD. In this paragraph each action required is explained in some detail.

4.1.1 Disable interrupts
Before disabling any part of the MCU it is necessary to disable the interrupts in the core.
This requirement ensures there are no read or writes in an interrupt handler to
peripherals or memory that is disabled. If this happens, an exception is raised. The
interrupt is re-enabled when the wakeup sequence is completed.
__disable_irq();
__disable_fiq();

4.1.2 Switch system to LPosc
After disabling the interrupts, the system clock should be switched to the LPosc (Low
Power Oscillator) which runs at 475 KHz nominal. The LPosc cannot be switched off,
thereby ensuring that the main system will have a clock when we are waking up. The
LPosc could be engaged later, but care must be taken to not disable the clock to the core
while running from it. Although the core will automatically switch to another clock source
if the clock is disabled, it is preferable for the code to be in full control of the core clock.

Switching to the LPosc is performed by setting the corresponding bits in the
‘SYS_CLK_CONF’ register.
SYS_CLK_CONF = AUTOBLK | DIV1;

4.1.3 Setting the wakeup bits
By enabling the Wakeup bit in the ‘PMU_CLK_CFG_xxx’ register, the clock to the
specified clock leaf will be disabled when the power down bit in the ‘PMU_PM’ register is
set. By setting the PD bit, all clocks with the wakeup bit set will be turned off at the same
time. When a wakeup event occurs, the power down bit is cleared and all peripherals will
be clocked again. To access the ‘PMU_CLK_CFG_xxx’ register, it is necessary to have a
clock in the specific clock leaf. Checking if a clock is available can be done with the
‘CGU_xxx_STAT’ register.

The process described above is the only method to disable the clock to the core,
because the RUN bit in the clock configuration register cannot be cleared. Setting the PD
bit will be the final action before entering sleep mode. We will describe how and when to
do this later.

4.1.4 Stop PLL and crystal oscillator
The PLL’s and the main crystal oscillator no longer needed, so it is now safe to stop
them.
CGU1_PLL_CTRL = 1; //Power Down CGU1 PLL
CGU_PLL_CTRL = 1; //Power Down CGU PLL
// Power down OSC pads, still leave HF bit as default.
CGU_OSC_CTRL = (0x1<<2) | (0x0<<0);

4.1.5 Disable the EEPROM
The EEPROM needs to be disabled next, however, the EEPROM controller is a part of
the FLASH controller and uses the same clock. The EEPROM memory can be seen as a
separate device and needs to be disabled.
EEPWRDWN =1; // Power down the EEPROM controller

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 7 of 18

4.1.6 Enable Sleep mode
The last actions needed to go to PD are disabling the flash and finally setting the PD bit
in the PMU.

Since the FLASH is being disabled, the code to disable flash cannot run from FLASH.
Hence the ‘disabling’ code is placed in TCM. To achieve this some special features of the
Keil uVision tool are used. This will copy the code from FLASH to a specified memory
location just before branching to ‘main’. The function ‘sleepFlashOff()’ which does the
work is placed in a separate file ‘flashoff.c’. In ‘Options for File’ the TCM memory area is
selected, uVision will handle the copying of the code.

Fig 2. Disabling flash

In ‘sleepFlashOff()’ firstly the flash controller is disabled and then the PD bit in the
PMU_PM register is set. At the moment the PD bit is set the clock to all clock leafs with
wakeup set are disabled, including the core clock, so no more code is executed.
FCTR |=0x200; // Power down FLASH
PMU_PM =0x1; // set the PD bit in the PMU

A few blocks of the device are still working; the LPosc cannot be disabled and thus is still
running. If the Watchdog timer is enabled it will continue to do so, because it is running
from the LPosc.

4.2 Waking up
The wakeup switch can be pressed to wake the device,. which will trigger the wakeup
circuit through the event router. This clears the PMU PD bit to re-enable all devices with

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 8 of 18

wakeup enabled. Some actions are required to get the controller fully up and running
again..

4.2.1 Re-enabling FLASH
The code had stopped execution with the ‘sleepFlashOff()’ function and will restart
execution after the PMU PD instruction. The code that puts the device to sleep is located
in the TCM, and will execute as soon as the PD bit is cleared. The remainder of the code
is still located in flash, so before we can proceed we need to re-enable the FLASH.
FCTR &=~0x200;

Now that the FLASH is accessible, we can branch back and wakeup the other parts of
the MCU.

4.2.2 Starting the clock source
All peripherals with the wakeup bit set are now active again. If the clock source for the
peripheral is the LPosc, then the peripheral will be working properly. . If the peripheral
clock source is the Xtal or the PLL, then those sources must be reactivated before the
peripherals will resume operation.

First we need to restart the crystal oscillator and wait for it to startup before starting the
PLL, as it is the clock source for the PLL.

We will then wait for the PLL to lock and output clock to stabilize before switching over
the system clock from the LPosc to the PLL.
CGU_OSC_CTRL |= (0x1<<2) | (0x1<<0); // re-enable the osc
while (!(CGU_RDET & XTAL_PRESENT)){ NOP; } // wait for osc to start up

// Restart PLL
CGU_PLL_CTRL = PLL_XTAL_SEL | (PLL_M_VALUE<<MSEL_SHIFT) | P23EN;

// Check lock bit, if unlocked, PLL_LOCK is always 0
while (!(CGU_PLL_STAT & PLL_LOCK)) { NOP; }
// Check clock detection register to make sure PLL is present now.
while (!(CGU_RDET & PLL_PRESENT)) { NOP; }

CGU_PLL_CTRL = PLL_XTAL_SEL | (PLL_M_VALUE<<MSEL_SHIFT) | P23EN;

// PLL is 250Mhz, SYS_CLK and TMR_CLK is 125Mhz. This line depends on the board
// and configuration of clocks used see TargetResetInit() in target.c
SYS_CLK_CONF = CLK_SEL_PLL | AUTOBLK | DIV2;

4.2.3 Enabling interrupts
Now that all systems and subsystems are working again , it’s safe to re-enable the
interrupts without causing any exceptions. Any pending interrupts in the VIC will be
handled now and normal operation will continue.
__enable_fiq();
__enable_irq();

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 9 of 18

4.3 Additional power saving
By understanding the architecture of the clock tree and specifically that of the CGU, the
user can save an additional 20 – 30 uA.. The clock to each peripheral is disconnected by
the clock switches of the PMU and are located at the output of the CGU . Depending on
the selected clock source, the logic in the CGU is still working even when the crystal
oscillator and the PLL’s are disabled. If the LPosc was selected it will continue to run and
keep clocking the clock path inside the CGU through to the clock switch of the PMU. To
save power, the peripheral clock needs to be switched to a clock source that can be
disabled, namely the crystal oscillator..

External
Oscillator

LPosc

CGU

Safe
(WDT)

Peripheral 1
(CAN0)

Peripheral 2
(I2C)

Peripheral n

PLL,
Dividers

etc.

Branch 1
(System)

Branch 2
(IVNSS)

Branch n

Branches

Leaves
Leaves not
shown

Controlled by PMU PD bitSwitches controlled
by branch clock

configuration register
(e.g IVNSS_CLK_CONF)

Fig 3. Simplified clock structure

To save power it is essential that as little logic is working as possible. Figure 2 illustrates
a simplified clock structure that makes it easy to see how the switches need to be
configured.

In the code a define ‘SWITCH_CLOCKS_TO_XTAL’ is used to switch all clocks to the crystal
oscillator prior to PD.

4.3.1 Changing the clock source
All clock branches need to be switched to work directly from the crystal oscillator. Setting
the XXX_CLK_CONF register does this.
XXXX_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;

This code is located directly behind the line which switches the system clock to the
LPosc. The system clock is not set to work from the crystal oscillator.

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 10 of 18

4.3.2 Disable the clock branches
After setting the wakeup bits, the clock branches can be disabled. Although the main
clock source for these branches will be disabled, switching them off gives a predictable
behavior when the clock source is restored.
xxxx_CLK_CONF |= 0x01;

4.3.3 Re-configuring the clock branches
For the reconfiguration of the clocks, the function ‘TargetResetInit()’ is called again.. The
restarting of the crystal oscillator and PLL’s as described in paragraph 4.2.2. is skipped
because this was already carried out by ‘TargetResetInit()’.

4.4 Measurement
If the MCU is in PD, the current consumption can be measured over the pads of resistor
R6. Table 1 shows some typical values.

Table 1. VDD current consumption
Shown values are typical

Power state Active PD normal PD clocks switching

VDD (1.8V) Current
consumption

51 mA 85 uA 55 uA

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 11 of 18

5. Program code

1 /***
2 * pmuIPD .c : PMUIPD demo modu le f i l e for NXP LPC29xx Fami ly Microprocessors
3 *
4 * Copyr ight(C) 2007, NXP Semiconductor
5 * A l l r ights reserved .
6 *
7 * H istory
8 * 2009 .01 . 14 ver 1 .00 F i rst Re lease
9 *
10 **/
11 #include "LPC29xx.h" /* LPC29xx definitions */
12 #include "type.h"
13 #include "target.h"
14 #include "irq.h"
15 #include "LCD.h"
16 #include "extint.h"
17 #include "flashoff.h"
18
19 #define SWITCH_CLOCKS_TO_XTAL 0 // 1 : Switch a l l c locks to Xta l before PD to save some add it iona l power
20 // 0 : on ly use the PMU PD features
21 void GOSleepMode(void);
22
23 extern volatile DWORD eint_flag;
24
25 /***
26 ** Funct ion name: ma in
27 **
28 ** Descr ipt ions : ma in rout ine for PMU modu le test
29 **
30 ** parameters : None
31 ** Returned va lue : i n t
32 **
33 ***/
34 int main(void)
35 {
36 DWORD cnt=25;
37 unsigned long i;
38
39 LCD_init ();
40 LCD_cls ();
41 LCD_print (0, 0, "LPC2900 PD DEMO ");
42 LCD_print (0, 1, " www.NXP.com ");
43
44 // De lay i s necessary to a l low ref lash ing , e lse the c locks cou ld be d isab led before
45 // the JTAG commun icat ion can i n i t i a leze and you br ick you MCU.
46 for (i=0;i<=0x2FFFFF;i++){}
47
48 GPIO1_DR = (1<<24)|(1<<25)|(1<<26)|(1<<27)|(1<<28)|(1<<29);

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 12 of 18

49
50 // externa l i nterrupts are used as a wakeup event, se lect the event i n ex int .h
51 EventRouter_Init();
52
53 while (1)
54 {
55 // externa l i nterrupt occurs .
56 if (eint_flag > 0)
57 {
58 if(eint_flag & (1<<EXINT_sleep))
59 {
60 GOSleepMode(); // got to s leep
61 }
62 if(eint_flag & (1<<EXINT_wake))
63 {
64 GPIO1_OR ^= (1<<26); // togg le led
65 }
66 eint_flag = 0;
67 }
68
69 // b l i nk led on port 1 .27 to i nd icate we are runn ing the ma in loop wa it ing for a switch
70 GPIO1_OR ^= (1<<27);
71 LCD_bargraph (0, 1, 16, cnt&0x7F); /* D isp lay bargraph accord ing to cnt */
72 cnt++;
73 }
74 }
75
76
77 /**
78 ** Funct ion name: GOSleepMode
79 **
80 ** Descr ipt ions : Set c locks and go to s leep mode . The s leep mode
81 ** turns off a l l the c locks , then , puts the
82 ** the micro i nto power down mode which turns off
83 ** the c locks w ith wakeup enab led . The wakeup source
84 i s conf igured before go ing i nto s leep mode (power down) .
85 **
86 ** parameters : None
87 ** Returned va lue : None
88 **
89 **/
90 void GOSleepMode(void)
91 {
92 LCD_print (0, 0, "Sleeping..ZZzzz");
93
94 // any pend ing i nterrupts i n the VICwi l l prevent the dev ice from go ing into power down mode ,
95 // so a l l pend ing i nterrupts need to be hand led before we can proceed .
96 Interrupts in the core do not
97 // prevent the dev ice from go ing to s leep .
98

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 13 of 18

99 // Before we p roceed , we wi l l d i sab le the i nterrupt i n the core because any core i nterrupt w i l l cause prob lems when wak ing up . If we wakeup by a
i nterrupt

100 // the CPU wi l l try to branch to an i nterrupt hand ler and approach unava i lab le hardware // , caus ing an undes ired jump to the exept ion hand lers .
101 __disable_irq();
102 __disable_fiq();
103
104 // If LP_OSC and PLL are not present , no need to go further
105 while (!(CGU_RDET & (0x01|PLL_PRESENT)));
106
107 // Set the system c lock to run from LPosc
108 SYS_CLK_CONF = AUTOBLK | DIV1;
109
110 #if SWITCH_CLOCKS_TO_XTAL
11 1 // A l l the subsystem switched to run from X_ta l .
112 IVNSS_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
113 MSCSS_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
114 UART_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
115 SPI_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
116 ADC_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
117
118 ICLK0_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
119 ICLK1_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
120
121 USB_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
122 USB_I2C_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
123 OUT_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
124 CTEST_CLK_CONF = CLK_SEL_XTAL | AUTOBLK | DIV1;
125 #endif
126
127 // A l l the branch c locks are set as "wake-up enab led" .
128 // The CPU, SYS, PCR c locks can on ly be d isab led with the PMU_PD b i t .
129 // b i t2 b i t1 b i t0
130 // WAKEUP | AUTO | RUN //
131 PMU_CLK_CFG_CPU = (0x1<<2)|(0x1<<1)|(0x1<<0);
132 PMU_CLK_CFG_SYS = (0x1<<2)|(0x1<<1)|(0x1<<0);
133 PMU_CLK_CFG_PCR = (0x1<<2)|(0x1<<1)|(0x1<<0);
134 PMU_CLK_CFG_FMC = (0x1<<2)|(0x1<<1)|(0x1<<0);
135 PMU_CLK_CFG_RAM0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
136 PMU_CLK_CFG_RAM1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
137
138 // The fo l lowing c locks cannot be accessed un less XX_CLK_CONF are set ,
139 // LP_OSC, ext . OSC, or PLL , or FDIVx
140 // set a l l c locks to run , auto and wakeup enab led .
141 PMU_CLK_CFG_SMC = (0x1<<2)|(0x1<<1)|(0x1<<0);
142 PMU_CLK_CFG_GESS = (0x1<<2)|(0x1<<1)|(0x1<<0);
143 PMU_CLK_CFG_VIC = (0x1<<2)|(0x1<<1)|(0x1<<0);
144 PMU_CLK_CFG_PESS = (0x1<<2)|(0x1<<1)|(0x1<<0);
145 PMU_CLK_CFG_GPIO0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
146 PMU_CLK_CFG_GPIO1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
147 PMU_CLK_CFG_GPIO2 = (0x1<<2)|(0x1<<1)|(0x1<<0);
148 PMU_CLK_CFG_GPIO3 = (0x1<<2)|(0x1<<1)|(0x1<<0);

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 14 of 18

149 PMU_CLK_CFG_IVNSSA = (0x1<<2)|(0x1<<1)|(0x1<<0);
150 PMU_CLK_CFG_MSCSSA = (0x1<<2)|(0x1<<1)|(0x1<<0);
151 PMU_CLK_CFG_GPIO4 = (0x1<<2)|(0x1<<1)|(0x1<<0);
152 PMU_CLK_CFG_GPIO5 = (0x1<<2)|(0x1<<1)|(0x1<<0);
153 PMU_CLK_CFG_DMA = (0x1<<2)|(0x1<<1)|(0x1<<0);
154 PMU_CLK_CFG_USB = (0x1<<2)|(0x1<<1)|(0x1<<0);
155 PMU_CLK_CFG_PCR_IP = (0x1<<2)|(0x1<<1)|(0x1<<0);
156 PMU_CLK_CFG_IVNSS_VPB = (0x1<<2)|(0x1<<1)|(0x1<<0);
157 PMU_CLK_CFG_CANCA = (0x1<<2)|(0x1<<1)|(0x1<<0);
158 PMU_CLK_CFG_CANC0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
159 PMU_CLK_CFG_CANC1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
160 PMU_CLK_CFG_I2C0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
161 PMU_CLK_CFG_I2C1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
162 PMU_CLK_CFG_LIN0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
163 PMU_CLK_CFG_LIN1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
164 PMU_CLK_CFG_MSCSS_VPB = (0x1<<2)|(0x1<<1)|(0x1<<0);
165 PMU_CLK_CFG_MTMR0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
166 PMU_CLK_CFG_MTMR1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
167 PMU_CLK_CFG_PWM0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
168 PMU_CLK_CFG_PWM1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
169 PMU_CLK_CFG_PWM2 = (0x1<<2)|(0x1<<1)|(0x1<<0);
170 PMU_CLK_CFG_PWM3 = (0x1<<2)|(0x1<<1)|(0x1<<0);
171 PMU_CLK_CFG_ADC0_VPB = (0x1<<2)|(0x1<<1)|(0x1<<0);
172 PMU_CLK_CFG_ADC1_VPB = (0x1<<2)|(0x1<<1)|(0x1<<0);
173 PMU_CLK_CFG_ADC2_VPB = (0x1<<2)|(0x1<<1)|(0x1<<0);
174 PMU_CLK_CFG_QEI = (0x1<<2)|(0x1<<1)|(0x1<<0);
175 PMU_CLK_CFG_OUT_CLK = (0x1<<2)|(0x1<<1)|(0x1<<0);
176 PMU_CLK_CFG_UART0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
177 PMU_CLK_CFG_UART1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
178 PMU_CLK_CFG_SPI0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
179 PMU_CLK_CFG_SPI1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
180 PMU_CLK_CFG_SPI2 = (0x1<<2)|(0x1<<1)|(0x1<<0);
181 PMU_CLK_CFG_TMR0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
182 PMU_CLK_CFG_TMR1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
183 PMU_CLK_CFG_TMR2 = (0x1<<2)|(0x1<<1)|(0x1<<0);
184 PMU_CLK_CFG_TMR3 = (0x1<<2)|(0x1<<1)|(0x1<<0);
185 PMU_CLK_CFG_ADC0 = (0x1<<2)|(0x1<<1)|(0x1<<0);
186 PMU_CLK_CFG_ADC1 = (0x1<<2)|(0x1<<1)|(0x1<<0);
187 PMU_CLK_CFG_ADC2 = (0x1<<2)|(0x1<<1)|(0x1<<0);
188 PMU_CLK_CFG_TSSHELL = (0x1<<2)|(0x1<<1)|(0x1<<0);
189 PMU_CLK_CFG_USB_I2C = (0x1<<2)|(0x1<<1)|(0x1<<0);
190 PMU_CLK_CFG_USB_CLK = (0x1<<2)|(0x1<<1)|(0x1<<0);
191
192 #if SWITCH_CLOCKS_TO_XTAL
193 // power down c lock s l i ces on the subsystem.
194 USB_CLK_CONF |= 0x01;
195 USB_I2C_CLK_CONF |= 0x01;
196 OUT_CLK_CONF |= 0x01;
197
198 IVNSS_CLK_CONF |= 0x01;
199 MSCSS_CLK_CONF |= 0x01;

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 15 of 18

200 UART_CLK_CONF |= 0x01;
201 SPI_CLK_CONF |= 0x01;
202 ADC_CLK_CONF |= 0x01;
203 TMR_CLK_CONF |= 0x01;
204 ICLK0_CLK_CONF |= 0X01;
205 ICLK1_CLK_CONF |= 0x01;
206 #endif
207
208 CGU1_PLL_CTRL = 1; //Power Down CGU1 PLL
209 CGU_PLL_CTRL = 1; //Power Down CGU PLL
210
211 // Power down OSC pads , s t i l l l eave HF b it as defau lt .
212 CGU_OSC_CTRL = (0x1<<2) | (0x0<<0);
213
214 EEPWRDWN =1; // Power Down the EEPROM contro l ler
215
216 sleepFlashOff();// S leepf lashOff i s p laced i n TCM so f lash can be d isab led . see "f la shoff .c "
217 // To locate the code in TCM the uV is ion feature i s used .
218
219 //void s leepF lashOff(vo id)
220 // {
221 // /* D isab le f lash (Power Down) */
222 // FCTR |=0x200;
223 //
224 // /* Switch se lected c locks off (resumed at event) */
225 // PMU_PM =0x1 ;
226 //
227 // /* Enab le f lash */
228 // FCTR &=~0x200;
229 //
230 // return;
231 // }
232
233 #if SWITCH_CLOCKS_TO_XTAL
234
235 TargetResetInit(); // a qu ick way to get a l l c lock conf igured aga in after wakeup
236 EventRouter_Init();
237 #else
238 CGU_OSC_CTRL |= (0x1<<2) | (0x1<<0); // re-enab le the osc
239 while (!(CGU_RDET & XTAL_PRESENT)){ NOP; } // wa i t for osc to start up
240
241 // Restart PLL
242 CGU_PLL_CTRL = PLL_XTAL_SEL | (PLL_M_VALUE<<MSEL_SHIFT) | P23EN;
243
244 // Check lock b i t , i f un locked , PLL_LOCK i s a lways 0
245 while (!(CGU_PLL_STAT & PLL_LOCK)) { NOP; }
246 // Check c lock detect ion reg ister to make sure PLL i s present now.
247 while (!(CGU_RDET & PLL_PRESENT)) { NOP; }
248
249 CGU_PLL_CTRL = PLL_XTAL_SEL | (PLL_M_VALUE<<MSEL_SHIFT) | P23EN;
250

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 16 of 18

251 // PLL is 250Mhz , SYS_CLK and TMR_CLK i s 125Mhz . Th is l i ne depends on the board
252 // and conf igurat ion of c locks used see TargetResetIn i t () i n target .c
253 SYS_CLK_CONF = CLK_SEL_PLL | AUTOBLK | DIV2;
254 #endif
255
256 // At th is po int a l l i n terrupts are st i l l d i sab led and i t 's now safe to
257 // re-enab le them as a l l the hardware i s up and runn ing aga in .
258 __enable_fiq();
259 __enable_irq();
260
261 LCD_print (0, 0, " Awake ");
262
263 return;
264 }
265 /**
266 ** End Of F i le
267 **/

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

AN10795_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 25 February 2009 17 of 18

6. Legal information

6.1 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and
without notice. This document supersedes and replaces all information
supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be
expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors accepts no liability for
inclusion and/or use of NXP Semiconductors products in such equipment
or applications and therefore such inclusion and/or use is for the
customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes
no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.

6.2 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10795
 LPC29xx Power-down mode explained

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

 © NXP B.V. 2009. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, email to: salesaddresses@nxp.com

Date of release: 25 February 2009
Document identifier: AN10795_2

7. Contents

1. Introduction ...3
2. Hardware..3
3. Software ...3
3.1 IDE ..3
3.2 Configuring the code ...3
3.3 Compiling and flashing the code3
4. Program description ...4
4.1 Entering sleep mode ...6
4.1.1 Disable interrupts ..6
4.1.2 Switch system to LPosc ..6
4.1.3 Setting the wakeup bits ...6
4.1.4 Stop PLL and crystal oscillator6
4.1.5 Disable the EEPROM..6
4.1.6 Enable Sleep mode ...7
4.2 Waking up ...7
4.2.1 Re-enabling FLASH ..8
4.2.2 Starting the clock source8
4.2.3 Enabling interrupts ..8
4.3 Additional power saving ..9
4.3.1 Changing the clock source9
4.3.2 Disable the clock branches10
4.3.3 Re-configuring the clock branches10
4.4 Measurement ..10
5. Program code ..11
6. Legal information ..17
6.1 Disclaimers..17
6.2 Trademarks ...17
7. Contents...18

	1. Introduction
	2. Hardware
	3. Software
	3.1 IDE
	3.2 Configuring the code
	3.3 Compiling and flashing the code

	4. Program description
	4.1 Entering sleep mode
	4.1.1 Disable interrupts
	4.1.2 Switch system to LPosc
	4.1.3 Setting the wakeup bits
	4.1.4 Stop PLL and crystal oscillator
	4.1.5 Disable the EEPROM
	4.1.6 Enable Sleep mode

	4.2 Waking up
	4.2.1 Re-enabling FLASH
	4.2.2 Starting the clock source
	4.2.3 Enabling interrupts

	4.3 Additional power saving
	4.3.1 Changing the clock source
	4.3.2 Disable the clock branches
	4.3.3 Re-configuring the clock branches

	4.4 Measurement

	5. Program code
	6. Legal information
	6.1 Disclaimers
	6.2 Trademarks

	7. Contents

